Collection:
Copied from originals in
Georgetown University Library Washington, D.C.

WARIING:

\therefore not to be
reproduced, published or deposited elsewhere without permission.

GEORGETOWN

UNIVERSITY

BULLETIN

UNDERGRADUATE SCHOOLS 1975-1976

Georgetown University is an Equal Employment Opportunity/Affirmative Action Institution.
Photo Composition: Bru-El Graphic Inc. Printing: William Byrd Press

COLLEGE OF ARTS AND SCIENCES

Royden B. Davis, S.J.
Richard H. Sullivan Hubert J. Cloke
H. Rosalind Cowie
Anne D. Sullivan

Dean
Associate Dean
Assistant Dean
Assistant Dean
Assistant to the Dean

nal cumulative academic avera inimal 2.0
For the purpose of computing t course minimum, a science accompanying lab is counted as the lab need not be taken in the : as the lecture to be counted in laboratory not related to a cc ourse worth less than three cr omputed as half a course.
by an optimistic Christian hume committed to the assumption of resp and action. Accordingly, the Colleg encourage the development of critic: respect for tradition and human re an appreciation of life and all its end promotes not only the intellectual but also the search for personal convictions that will enable its throughout their lives, to continue and maturing their thought, and al tinue pursuing the integration of the ties, values and relations with others.

In light of these aims, the College veloped a diversified academic pro which fundamental issues and ultimat play an integral role. A high priority i on quality teaching and on developing munity of learning among its faculty; and administrators.

DEGREE REQUIREMENTS

Candidates for a degree in the Arts and Sciences must complete thi ing graduation requirements:
(1) Minimum of 120 semester hour
(2) Minimum of 38 semester cours
(3) General Education requireme semester courses:

Literature	2 courses
Math/Science	2 courses
Social Science	2 courses
Theology	2 courses
Philosophy	2 courses

(4) Selection of a major field of cor tion and completion of all requif of the major as specified by the ment.
(5) Comprehensive examination equivalent) in the student's ma

ATION FOR THE DEGREE

are awarded three times a ye: eptember and December. Se an application for the degree : Dean's Office. The last day to fi degree is February 1st; for a Sel ree, August Ist; for a Decembe ovember 1st. Failure to apply fc ay necessitate the postponeme tion.
omas are distributed at (ent in May. Those students in September and December the Commencement Exercises in ey prefer, diplomas can be mai omes in June.
beginning of senior year, stı quested to fill out an "Inforn in the College Dean's Office. upplies information about career tita-curricular activities during a pful in preparing letters of recor

RAL EDUCATION QUiREMENTS

general education requirements
fulfilled in the student's Fre phomore years. It is possible tu iftually all the requirements
of the normal course load
in Freshman year, the studel no more than two courses in a he; this regulation holds for year also. In addition, the stude e two courses in the same disci, ame semester during the first two

ICES

Christian humanism and assumption of responsibility dingly, the College seeks to 'elopment of critical powers, ion and human reason, and f life and all its endeavors. It y the intellectual disciplines ch for personal values and will enable its graduates, lives, to continue redefining ir thought, and also to con: integration of their activilations with others. e aims, the College has defied academic program in 11 issues and ultimate values le. A high priority is placed g and on developing a com; among its faculty, students s.

[REMENTS

a degree in the College of must complete the follow|uirements:
f 120 semester hours.
f 38 semester courses. ucation requirements of 10 urses:

2 courses

nce 2 courses
nce 2 courses
2 courses 2 courses
a major field of concentraipletion of all requirements as specified by the depart;ive examination (or its n the student's major field.

A final cumulative academic average of a minimal 2.0
ITE: For the purpose of computing the -eight course minimum, a science lecand accompanying lab is counted as one
The lab need not be taken in the same
ster as the lecture to be counted in this
er. A laboratory not related to a course
ny course worth less than three credits e computed as half a course.

ICATION FOR THE DEGREE

grees are awarded three times a year: in
September and December. Seniors file an application for the degree at the ege Dean's Office. The last day to file for ay degree is February 1st; for a Septemdegree, August 1st; for a December deNovember 1st. Failure to apply for the e may necessitate the postponement of uation.
iplomas are distributed at Comcement in May. Those students who uate in September and December take in the Commencement Exercises in May; they prefer, diplomas can be mailed to homes in June.
the beginning of senior year, students requested to fill out an "Information
" in the College Dean's Office. This supplies information about career plans extra-curricular activities during college. helpful in preparing letters of recommen-

tion.

Neral education REQUIREMENTS

The general education requirements are orhafily fulfilled in the student's Freshman Sophomore years. It is possible to comvirtually all the requirements in one
of the normal course load of ten ses in Freshman year, the student may ose no more than two courses in any one ipline; this regulation holds for Sophte year also. In addition, the student may take two courses in the same discipline in same semester during the first two years.

Literature

The literature requirement is normally fulfilled by English. Freshmen take a placement test during Freshman Orientation. On the basis of the testing, some students may be admitted to Honors English courses. Other students may be required to complete an additional course in writing. Most students, however, select two courses from the large number of Freshman offerings.

For students of exceptional language ability, the literature requirement may be fulfilled in a foreign language.

Social Science

A full year at the introductory level in one of the following fields satisfies the social science requirement: Economics, Government, History, Psychology, or Sociology.

Math/Science

The math/science requirement may be satisfied in any one of three ways: (1) a one-semester math course and a one-semester science course; (2) two one-semester science courses; (3) a full year sequence of Statistics with Calculus (031, 032), Calculus and Analytic Geometry (057-035, 036), Introductory Biology (023-003, 004), General Chemistry (023-003, 004), or General Physics (081-003, 004).

Philosophy and Theology

Georgetown, with its commitment to the Jesuit tradition, believes that modern men and women should consider reflectively their relationship to the world, their fellow man, and God. All students take a year of Philosophy and a year of Theology.

In Philosophy, Introduction to Philosophy and one elective are required. The Problem of God course or Introduction to Biblical Literature plus one elective are required for Theology.

Language

While there is no general language requirement for College students, some departments do require proficiency through the inter-

Georgetown 1975-76

College of Arts and Sciences

mediate level. Language requirements are noted under each major listing below. Language placement tests are available during Freshman Orientation. Students who pass at the advanced level are exempt from the requirement.

If language is not required, elective courses are selected by the student with the help of his or her adviser.

MAJOR CONCENTRATIONS

In the College of Arts and Sciences, the following major fields of concentration lead to a Bachelor of Arts degree:
American Studies
Classics
Economics
English
Fine Arts
Government

History
Modern Languages
Philosophy
Sociology
Theology
Interdisciplinary Studies

The following major fields lead to a Bachelor of Science degree:

Biology	Physics
Chemistry	Psychology
Mathematics	

At preregistration in the Spring before the end of the Sophomore year, students following a Bachelor of Arts curriculum are obliged to declare formally their major elective field for the ensuing two years. Although every attempt will be made to honor the student's first choice of a major, admission to a particular major shall be by permission of the Department concerned and ultimately of the Dean. Students following a Bachelor of Science curriculum in Biology, Physics, Mathematics, Chemistry or Psychology normally elect their program prior to registration in the Freshman year.

The major program includes the required courses as specified in the curricula. The student must receive departmental approval for all courses in his major field. At the end of the Senior year, each candidate for a degree must pass a comprehensive examination (or its equivalent) in his major field. This com-
prehensive may be written or oral, or bots depending on the department.

The major department may require the stiv: dent to take a maximum of 12 courses, fin cluding basic courses in that major. The student, in turn, may elect a maximum of courses in his major. It is expected that a sel. ence major in Junior and Senior years elect one non-science course per semester.

MINOR CONCENTRATIONS

Minor areas of concentration (minors) are permitted, but not required, in the College of Arts \& Sciences. The following areas are available for minor concentrations:

Biology
Chemistry
Classics
Computer Science
Economics
English
Fine Arts Government

History
Mathematics
Modern Languages
Philosophy
Physics
Psychology
Sociology
Theology

Minor areas of concentration should be declared in Junior year; in order to complete requirements for a minor, the student must take the majority of credits in the minor field at Georgetown. Minor requirements are listed under departmental entries.

When a student has declared a double major, a minor is not permitted. Double minors also are not approved.

PREPARATION FOR GRADUATE AND PROFESSIONAL SCHOOLS

A large proportion of the graduates of the College each year go on to graduate and professional schools. The College attempts, through its curricula, programs, and advising system, to give its students strong preparation for graduate work.

Pre-Legal

Georgetown has a long tradition of preparing students to enter the legal profession. The Law Center itself, located near the U.S Capitol, has grown to national prominence. While there is no "pre-law" curriculum, stu"
uts preparing for law school should ec it on courses which require analytic gand clear written expression.
Most students who plan to go to law : jajor in one of the humanities or soci aces. However, the flexibility of the C giriculum gives students in any major pportunity to elect courses in areas yy serve as a background for law. Stı to think they may be interested in a areer should elect such courses as Constitutional History, Accounting, Ciminology. The Associate Dean's hintains a small but current libra llormation to help those applying t blools.

hisMedical and Pre-Dental

Georgetown offers a number of pro wich prepare students to enter medifatal school. In each of these the st wist take the following basic pre-me prdental courses (a full year of each):

Mathematics (Calculus)
General Chemistry
Organic Chemistry
Introductory Biology
Elementary Physics
The B.S. programs with majors in Bi Chemistry, Mathematics, Physics, and dology include all or some of the
wiurses. The remaining courses on the li aten as electives to round out the pre-el/pre-dental requirements. The B.S. Medical/Pre-Dental programs with maj liology, Chemistry, and Physics are : dience programs, and offer more tha thimum of natural science courses rec loit medical school admission.
The A.B. Pre-Medical/Pre-Dental tums permit a student to major in one Wmanities or social sciences, and at the fine to fulfill the minimum science re thents for medical or dental school. Fi Fitnce courses may be taken as electi option of the student in consultation or her adviser. The proximity of the Ho the Georgetown Medical-Dental nd the Kennedy Institute of Bioeth: the student to be exposed t

Georgetown 1975-76

cate before the opening of the Fall term with the chairman of the Department. They should present a transcript of their record, and a description or syllabus of the course which they have taken. Such students, if approved in advance by the Department of History, will be allowed to substitute an elective course offered by the Department to the extent that classroom space permits.

History majors are required to complete History 003, 004 and at least eight semester courses in history electives (courses numbered 100 or above) chosen with the approval of the Department. The Department strongly recommends that students planning to major in History take two semester courses in History, and an additional social science course or courses (e.g., Economics 001, 002 and/or Government 001, 002) during their Sophomore year. History majors are also required to demonstrate foreign language proficiency (intermediate level).
The History majors must report to the History Department for selection of a Departmental Adviser before the end of Sophomore year.

The oral comprehensive examination is based upon 24 hours of elective courses, and is administered near the end of the Senior year.
Eighteen hours of History courses are required for a History minor.

HISTORY HONORS. Admission to the History Honors Program should be requested through written application to the chairman of the Department. Students who are accepted into this program will plan their studies with the Director of Honors Studies in History.

Required Courses

General education courses
2 Intermediate language
2 Modern History (044-003, 004)
8 History electives

MATHEMATICS

For a major in Mathematics the candidate is required to complete the following courses:

Calculus and Analytic Geometry (Ma) through 038), General Physics (Physic 016), Linear Algebra (Math. 202), Algebra I (Math. 203) and Advanced lus (Math. 231-232). The student is quired to complete at least four seme electives offered in the Department, level of 200 or above. Of these, at must be in Mathematics proper; the o may be in Computer Science. A stude joring in Mathematics therefore has tion of concentrating either in Mathe proper or in Computer Science.
For a minor in Mathematics, the c must complete the four-semester seqi Calculus and Analytic Geometry, and mesters of upper division courses in matics proper.
For a minor in Computer Science dent is required to take Introduction puters (Math. 071) or its equivalent, and Analytic Geometry III (Math. Vectors and Matrices (Math. 004), a semester courses in Computer Science 200 level.

Required Courses

General education courses
2 General Physics
4 Calculus and Analytic Geometry
1 Linear Algebra
1 Modern Algebra
2 Advanced Calculus
4 Mathematics electives

MODERN LANGUAGES

The Department of Modern Languages fers a major in French, German and Spanit In addition to a full year of the advanced lev of the language the major field consis courses of foreign language electives with the approval of the Department,

Students interested in a modern language major should also give thought to majoring in their chosen language in the School of La guages and Linguistics.

Required Courses

General education courses
French
Normal sequence assuming Intermedlate Frent
during Freshman year:
Hore year: 203-204.
vear: 211-212 and 249-250.

> yar: choice of two of following three 3-264; 271-272.
dadvanced undergraduates may takı urses as electives with adviser's apprc
nced German
an electives
inced Spanish
ish electives

OSOPHY

tudents in the College of Arts anc e required to take two courses in one in Freshman year and or ore year. These required course ation to Philosophy and an ele range of Intermediate Courses. who elect Philosophy as a majo to take an additional eight sem of Philosophy electives. In raduate courses in Philosophy are e to satisfy this requirement. M cted to work closely with the De Director of Undergraduate Studi nother member of the Departmei ating their program. Students to continue their philosophical st graduate level are strongly urg least two courses both in the histc phy and in the main philosop he Department is very receptive plinary programs of study when in be worked out. A student desiri rate in Philosophy, either as a r context of an interdisciplinary hould submit a proposed progra to the Departmental Committe raduate Majors for approval.
ors in Philosophy are further req a special seminar in their Senior phical Integration). Successful of this seminar, which carries credits, satisfies the comprehe tion requirement of the Colle;

d Sciences.

minor in Philosophy, a student to complete 18 credits: two ge

Saussure to nce to their :dures. Preers. Zarechnak
natural lan: Linguistics

Zarechnak
natural lan: Linguistics

4acdonald
structures.
4acdonald

MATHEMATICS
 057

Professors:
Lagnese (Chairman), Stokes, Weinstein (Emeritus)
Professor of Computer Science: Maisel
Associate Professors:
Bobo, Datko, Teller
Assistant Professors:
Benke, Orcutt, Rosier. Sandefur. Sullivan, Vogt
Assistant Professors of Computer Science:
Gnugnoli, Tucker
INSTRUCTORS:
Bradley. Chambers, Loatman

1. Introduction to College Mathematics (3)

This course is designed to assist students whose high school mathematics background is insufficient for the standard Freshman mathematics courses. Topics include algebraic operations, factoring, exponents and logarithms; polynomials, rational functions, the exponential, \log and trigonometric functions; graphing. Fall and Spring.
003. Introduction to Calculus (3)

This course is a terminal course for non-science students. Its contents are the concepts of the integral and the derivative; application of differentiation to study properties of polynomials and rational functions; antiderivatives and integrals of polynomials; derivatives and antiderivatives of exponential, logarithmic and trigonometric functions. Prerequisite: Two years of High School algebra or Math 001. Fall and Spring.
004. Vectors and Matrices with Applications (3) This course provides an introduction to the language and methods of matrix algebra for students in the social sciences, physical sciences, and business administration. Topics covered include: Matrix operations, inverse matrices, determinants and applications to linear equations; basic probability; Markov chains and multiple regression; linear inequalities and linear programming. Prerequisite: Two years of High School algebra or Math 001. Spring only.

005. Introduction to Statistics (3)

This course provides an introduction to descriptive methods; an elementary development of probability theory including sample spaces, random variables and their distributions, the binomial, normal and related distributions; and an introduction to statistical inference including random sampling, estimation of parameters, tests of hypotheses and
simple regression and correlation. Prerequisite: Two years of High School algebra or Math 001. Fall and Spring.

031, 032. Statistics with Calculus $(4,4)$
Topics are finite probability: finite probability spaces, random variables, probability distributions. Calculus: limits, derivatives, integrals, exponential and logarithmic functions, graphing and computation. Continuous probability: general probability spaces, random variables, distribution and density functions, the normal distribution. Statistics: sampling, estimation and testing, regression and curve fitting, and correlation. Prerequisite: Two years of High School algebra or Math 001.

035, 036. Calculus and Analytic Geometry I,

 II $(4,4)$This is a fundamental and in-depth study of differential and integral calculus of functions of one variable. Included is the study of sequences and infinite series.

037, 038. Calculus and Analytic Geometry III, IV $(4,4)$
This course is a natural sequel to Math 035, 036. It includes a study of vectors and matrices in n-dimensions with applications to multivariate calculus, such as: inner products and cross products, vector functions, the Jacobian matrix, curves and surfaces, Lagrange multipliers, change of variables, line integrals and surface integrals, the divergence theorem. Stokes' theorem.

202. Linear Algebra (3)

Basic properties of finite dimensional vector spaces and linear operators. Topics include: systems of equations, vector spaces, linear transformations, matrices, determinants, inner product spaces, canonical representations of operators. Fall only.

203. Modern Algebra I (3)

Basic algebraic structures and their homomorphisms: groups (including permutation groups, finitely-generated Abelian groups, Sylow theory) and rings (including unique factorization domains, polynomial rings). Prerequisite: Math. 202. Spring only.

204. Modern Algebra II (3)

More basic algebraic structures and their homomorphisms: modules and algebras; Galois theory with its applications to constructions by straightedge and compass and to the solvability of polynomial equations. Prerequisite: Math. 203. Not offered in 1975-76.

211. Number Theory (3)

Basic properties of the integers: divisibility, prime numbers, unique factorization. Congruences and

Mathematics

quadratic residues: Legendre's and Jacobi's symbol, law of quadratic reciprocity. Number theoretic functions: Euler's function, Möbius; function. Other topics will be chosen from among distribution of primes, sums of squares representations, Riemann's zeta function. Not offered in 1975-76.

212. Numerical Analysis (3)

Development of methods for solving numerical problems on digital computers. Problems discussed include solution of systems of linear equations and nonlinear equations, interpolation, numerical integration, and solution of ordinary differential equations. Work will include solving practical problems using the computer. Not offered in 1975-76.

215. Differential Geometry (3)

The analytic representation of curves and a discussion of arc length and the formulae of Frenet which determine the intrinsic properties of space curves. The theory of surfaces, particularly their representation by curvilinear coordinates; this includes the equations of Gauss-Weingartern and the fundamental theorem of surface theory which states that a surface is uniquely determined by its first and second fundamental forms. The geometry of surfaces which is developed through a study of geodesics. Special topics of interest such as isometric and geodesic mappings, minimal and ruled surfaces. Not offered in 1975-76.

231, 232. Advanced Calculus $(3,3)$
Construction of the fields of real and complex numbers. Notions of metric spaces, compactness, with applications in the study of functions. Sequences and series of functions. The RiemannStieltjes integral. Topics in the theory of functions of several variables.

233, 234. Probability Theory and Statistics (3, 3)

Probability theory: probability spaces, random variables and their distributions, multivariate distributions, the normal and related distributions, and the central limit theorem. Statistical inference: point and interval estimation, hypothesis testing, chi-square tests, general linear models, linear regression and analysis of variance.
235. Fourier Series (3)

The expansion of a function in Fourier series. Orthogonality. Mean and pointwise convergences. Summation methods. Application to boundary value problems of mathematical physics. Not offered in 1975-76.
236. Introduction to Complex Variables and Applications (3)
Complex numbers. Analytic functions including
exponential, logarithmic and trigonometric functions of a complex variable. Geometric and mapping properties of analytic functions. Contour integration, Cauchy's theorem, the Cauchy integral formula. Power series representations. Residues and poles. Conformal mapping and applications as time permits. Not offered in 1975-76.

239, 240. Applied Analysis (3, 3)
Ordinary differential equations with emphasis on the linear theory including techniques of power series solutions; partial differential equations including a study of the classical equations of mathematical physics and the method of separation of variables; orthogonal expansion of functions including Fourier series and Legendre polynomials; complex analysis including Cauchy's integral formula, power series, poles and residues. Prerequisites: Math 035-038 or equivalent. Not offered in 1975-76.

251. Ordinary Differential Equations (3)

Basic theory of systems of linear equations. Methods of solution for systems with constant coefficients. Applications to electrical circuits. Stability theory of linear and non-linear systems, with applications to mechanics. Fall only.

252. Partial Differential Equations (3)

Topics will include: first order equations including Lagrange's method of studying quasi-linear equations, characteristic curves and their role in solving initial value problems; linear second order equations including formal methods of solving them; classification of second order systems and their reduction to normal form; the derivation and use of Green's formula for solving second order equations; boundary value problems for the Laplace equation and for Poisson's equation; the study of initial value and boundary value problems for the wave equation and the heat equation, particularly the technique of separation of variables. Spring only.

253. Mathematical Modeling (3)

This course will expose the student to a wide variety of applications of mathematics in the social, physical, and biological sciences. For each application, there will be a description of the application, a derivation of the mathematical model, an analysis of the model, either analytically, or computationally, and usually both, and an interpretation of the conclusions. Not offered in 1975-76.

254. Linear and Dynamic Programming with

 Economic Applications (3)An introduction to two basic optimization techniques, linear programming and dynamic programming. The mathematical theory will be illustrated by applications to production and inventory
onometric funcmetric and mapmons. Contour inCauchy integral anions. Residues d applications as 76.
th emphasis on uses of power se:quations includns of mathematf separation of of functions inIre polynomials; achy's integral 1 residues. Preivalent. Not of-
ions (3)
:quations. Methwith constant cal circuits. Sta:ar systems, with le.
ns (3)
rations including asi-linear equair role in solving and order equaof solving them; :ms and their reation and use of Ind order equafor the Laplace on; the study of roblems for the ion, particularly ariables. Spring
t to a wide varics in the social, For each appliin of the applitical model, an vtically, or comd an interpretI in 1975-76.

ming with

timization techI dynamic proэгy will be illuson and inventory
problems, scheduling and network problems. Prerequisites: Math 035-037. Not offered in 1975-76.

Computer Science Courses

070. Introduction to Computers and Their Application (3)

Introduces the student to the computer and the way it is used. Topics discussed include the impact of computers on society, how computers work, applications of computers in business, management, the physical and social sciences and engineering and an overview of programming languages. Spring only.

071. Introduction to Computers with FORTRAN Programming (3)

Introduces the student to computer science as a discipline and to the techniques of algorithmic formulation and FORTRAN programming. Topiss discussed include the representation of informaion on a computer, a survey of computers, programming languages and applications, algorithmic formulation, flow charting and the basic elements of FORTRAN programming. Operating systems and service programs are discussed as time permiss.
212. Numerical Analysis (3)

Development of methods for solving numerical problems on digital computers. Problems discussed include solution of systems of linear equatons and nonlinear equations, interpolation, numetrical integration, and solution of ordinary differential equations. Work will include solving practical problems using the computer. Not offere in 1975-76.

271. Data Structures and PL/1
 Programming (3)

Introduces the student to the basic concepts of data structures and implements these basic concents using PL/I. Topics discussed include the structure and nature of $\mathrm{PL} / 1$, list processing internal storage hierarchies and string manipulation, string processing, data structures in formal langage and grammars with computer applications. Prerequisites: Math 071 and either Math 004 or Math 037 . Spring only.

272. Programming Languages (3)

Acquaints the student with the broad range of genaral and special purpose computer languages and the techniques for the useful application of these languages. Topics discussed include: PL/1 as a string and list processing language, special purpose list processing languages and their applications, special purpose string processing languages and their application, interactive and data processing languages, programming languages and their application. Prerequisite: Math 271. Fall only.

Mathematics

273. Computer Organization and Assembly
 Language Programming (3)

Introduces the student to the organization of present day computers, machine and assembly languages. Topics include computer statics such as internal organization, memory, addressing sequences and instruction formats and computer dynamics such as instruction/execution cycle, sequencing and branching. Arithmetic logic and data transfer. Other topics include assembly language programming, segmentation and linkage, relocatability, macros and comparative architecture. Prerequisite: Math 071 or equivalent. Fall only.

274. Operating Systems (3)

Acquaints the student with the nature and parposes of operating systems and the way these purposes are implemented. Topics discussed include: history of the development; types of systems; alements of operating systems: control and calling sequinces, service modules, logic and control blocks; job and data management, and recovery and scheduling; utilities and loaders; spooling methods and components. Prerequisites: Math 271 and Math 273. Not offered in 1975-76.

277, 278. Undergraduate Seminar in Computer Science (3, 3)

This course is designed to permit the undergraduate to take part in directed research in computer science. Topics to be discussed will be dietoted by the needs of the student. Prerequisites: Math 271 and 273 and Permission of the Instructor.

