Hi Ms. Dunbar,

Thank you very much for turning up this interesting state of affairs. I believe this will be OK for our purposes, but I do have one question. You say that in 1925 a 3 hour course was worth 6 points. But if points are like semester hours at other institutions and if 125 are needed to graduate, it looks more like 3 points would be for 3 hours (assuming hours are counting just in-class time and not homework time), not 6. A minor typo perhaps? Or have I missed something?

In any case, thank you for the work you have done for the Cajori Two Project.

Walter Meyer

On Jul 9, 2008, at 5:22 PM, Joy Dunbar wrote:

Prof. Meyer.

Although time consuming, this has been an interesting investigation into old JHU catalogs and commencement programs here in the Office of the Registrar. I was hoping to have a better answer for the early years, but here is what I've found.

There are no catalogs prior to 1925 at which time the Bachelor's degree was awarded based on "points" with a note in the catalog that said this was "semester hours at other institutions". The requirement was 125 points, where basically the 3 hr course was 6 points. (There were exceptions for some courses and labs in some Courses of Study.)

By 1935 there was no more referral to "points", but only to satisfying a Course of Study as outlined by the major department. Looking at the Course of Study for many years, it was fairly consistent.

1945 and 1955 continued to grant the degree based upon the satisfactory completion of the outlined Course of Study.
By 1965 a course was assigned semester credits with the Bachelor's degree requiring a minimum of 120 credits.

This remained consistent though the next 40 years.

No records or reports referred to the terms as anything but semesters.

I hope this is the information that you needed.

Joy

---------------
Joy W. Dunbar
Assistant Registrar for Data Management and Institutional Research
Office of the Registrar
Phone: (410) 516-8745
Fax: (410) 516-6477
E-mail: jdunbar1@jhu.edu

Johns Hopkins University
75 Garland Hall
3400 N. Charles Street
Baltimore MD 21218

Walter Meyer <meyer1@adelphi.edu> 7/9/2008 3:23 PM >>>
Hi Ms. Dunbar,
between literature and those intellectual disciplines. The authority of the literary text and certain acts are sciences of the man.

The limits of Genre and the critical limitations of formal critics and themes in national literatures.

...ing critical perspectives to reveal contributions by analysis of language, psycholinguistics, and metaphoric and mythic interpretation of the structure(s) and dynamics of texts, both imitative, etc.). Students will be encouraged to work and independent research, insofar as the problem of textual structure and interpretative methods for advanced students, will be open to the necessary preparation and interest. The need for such participation interests.

1785 David

Myth and Ritual
1.331 Myth and Ritual
1.334 Art and Aesthetics in Anthropological Perspective
1.336 Anthropological Approaches to Folklore
1.338 Goethe's Faust in Translation
9.65 Literature and Society in Eighteenth-Century Germany
9.99 The Contemporary Scene
8.31-12 Introduction to Germanic Philology
8.355 German Literature in the Age of Goethe
1.341 Romanticism
1.307 Renaissance Humanism
1.308 Late Middle Ages
8.314 Italian Humanism
8.316 Reformation History
14.32 Science and Technology in Contemporary Society
14.337 Android: Artificial Human Beings in Literature and Myth from the Renaissance to the Present
14.346 Studies in Biology and Society: The Idea of Progress
14.347 Studies in Biology and Society
14.348 Health and Social Welfare in Western Society
14.358 Science, Magic, and Religion in Early Modern Europe
14.369 Science and Imaginative Literature
15.30 Aesthetics of the Film
15.304 History of Modern Philosophy: The 19th Century
21.311 Translation: History, Theory and Practice
21.354 Marxist Aesthetics
21.413 The Iconic and the Linguistic
21.661 An Historical Survey of Romance Linguistics
22.301 Anden Writing
22.303 The Fiction Writer's Situation in the Last Third of the 20th Century
22.403 The Modern Lyric
The following courses will be offered at Goucher College:
301 Roman and English Satire
211 Digging the Greeks: An Introduction to Greek Archaeology
243 Societies in Greece The Worlds of Pericles and Caesar
21x Alexander the Great, the "Pax Romana" and Christianity: The Beginnings of World Unity in Antiquity
213 Ancient Drama
216 The Epic
260 Classical Mythology and the Tradition

International Studies
See the Department of Political Science.

Italian
See the Department of Romance Languages.

Mathematical Sciences
For three centuries the principal applications of mathematics have been to engineering and to the classical natural sciences: astronomy, physics, and chemistry. At the same time, these fields have been important sources of...
inspiration and direction in the development of mathematics. Although the classical natural sciences were the first fields in which mathematics was applied, there are today many others. For example, biology, operations research, demography, management science, economics, information science, psychology, health care systems, sociology, ecology, and computer science were until only recently either nonexistent or largely descriptive and nonquantitative. Now, however, mathematical methods and models are essential to each of them.

Because of the obvious differences between these fields and the older physical sciences, it is no surprise that somewhat different quantitative methods have proved appropriate to them. Some of the methods, such as combinatorial analysis, already existed but were given new vitality by the needs of new applications. Other methods, such as the techniques of analysis in the finite number systems used in large digital computers, had to be created. Now, as always in the history of science, inspiration flows both ways between theory and applications; this is as desirable as it is inescapable.

Basic mathematical methods remain essential in the new fields of application, of course, but a glance at any of their current journals reveals that many newer techniques are in wide use: Probability, mathematical programming, statistical analysis and inference, optimal control, stochastic processes, game theory, queueing theory, numerical analysis, information theory, combinatorics, finite and discrete mathematics, and decision theory. We shall refer to such fields of modern applied mathematics collectively as the mathematical sciences. It is across this spectrum of activities that the programs of instruction and research of the Department of Mathematical Sciences are spread.

At both the graduate and undergraduate levels the department’s programs emphasize basic training in the mathematical disciplines so necessary for science and management in the 1970’s. Students are encouraged to broaden their background and to develop their scientific intuition by electing a variety of courses in the applications. A typical program should prepare the student to continue a scientific career in either theoretical or applied work (or both).

The department has an undergraduate major leading to the B.A. degree and graduate programs leading to the M.A., M.S.E., and Ph.D. degrees. It also has a combined bachelor’s-masters program under which exceptionally able undergraduates may be admitted early to simultaneous graduate work.

The Faculty
Professor David B. Duncan: general statistical theory and applications, applied statistical inference theory.
Professor Charles D. Flaggle: operations research, decision theory, health systems analysis.
Professor Martin Greenberger: simulation methods in policy research, computer-communication networks.
Professor Roger A. Horn (Chairman): analysis, complex variables, probability.
Professor Rufus Isaacs: differential games, control theory, applied mathematics.
Professor Allyn W. Kimball: experimental statistics, biometry.
Professor Eliezer Naddor: operations research, inventory systems, computer science.
Professor John P. Young: operations research, stochastic processes, queueing
theory, health systems.
Associate Professor D. Jack Elzinga: optimization theory, mathematical pro-
gramming, location theory, production scheduling.
Associate Professor Charles A. Rohde: general statistical theory, statistical in-
ference in stochastic processes.
Associate Professor Richard M. Royall: statistical inference, nonparametric sta-
tistics, sampling theory.
Assistant Professor Richard Bartels: numerical analysis, optimization.
Assistant Professor James Case: differential games, many-player game theory,
applied mathematics, mathematical economics.
Assistant Professor William H. Cunningham: combinatorics, discrete optimization.
Assistant Professor Susan D. Horn: decision theory, probability, large sample
theory.
Assistant Professor William H. Farr: statistics, continuous time programming.
Assistant Professor Alan F. Karr: stochastic processes, probability.
Assistant Professor Albert Liebeltaru: statistics, stochastic processes, categori-
data.
Assistant Professor David Pyne: statistical inference, abstract mathematical pro-
gramming.

Undergraduate Programs

A major in mathematical sciences includes a core of quantitative work of
virtually universal applicability, a program of advanced work in areas of the
student's choice, and the opportunity to choose an area for application of
acquired technical skills. Students with an interest in quantitative studies will
find this major sufficiently flexible to permit them to prepare for careers or
graduate work in such diverse fields as actuarial science, business, computer
science, economics, mathematics, medicine, operations research, physical or
social science, and statistics. Sample programs appropriate to various areas of
concentration are available in the department office.

Requirements for the Bachelor of Arts Degree

The requirements for the major are broadly stated, but it is important that each
student have a definite plan for his or her academic program. With the advice
and consent of the faculty adviser, each student will construct a program con-
sistent with his or her goals which incorporates the requirements below. A
written copy of this program should always be on file with the faculty adviser,
although it may need to be revised and updated from time to time. Every
departmental major must meet University requirements outlined in the front of
the catalog. The departmental requirements are: (a) at least forty credits for
courses coded (Q) including a core program consisting of: four semesters of
elementary calculus, linear algebra, and advanced calculus; two semesters of
probability and statistics courses with a calculus prerequisite; and one semester
course in computing; at least eighteen credits must be for courses at or above the 300 level; (b) at least three semesters of course work in some one field of application of the mathematical sciences. The courses in (b) are to comprise a coherent program and at least one must be at or above the 300 level. Possible fields include chemistry, economics, engineering, mechanics, physics, psychology, and social relations. All courses used to meet departmental requirements must be passed with a grade of C or better.

The acquisition of at least a reading knowledge of French, German, or Russian is most strongly recommended. Students preparing for graduate work in the mathematical sciences should be aware that competence in one or two of these languages is an almost universal requirement for a graduate degree.

For information on the combined bachelor's/master's degree program, see Graduate Programs.

Mathematical Engineering

The major in Mathematical Engineering is a concentrated program designed for the student with an appetite for applied mathematics and a deep curiosity about science. This major is suitable preparation for a career in modern engineering and can also lead to graduate work in a variety of fields. It features an early and intensive exposure to basic mathematical methods which then are applied in the study of the fundamental sciences. An area of concentration is chosen so that course work toward the end of the program can focus on a field of interest to the student. The major leads to the B.E.S. or B.A. degree depending on the student's choice of electives. The courses specified for this major satisfy many of the requirements for the combined bachelor's/master's program in mathematical sciences; mathematical engineering majors should therefore consider enrollment in this program as well.

Information about admission to the major and a detailed program outline are available in the department office. It is essential that prospective majors begin this program in their first semester.

Graduate Programs

A wide variety of advanced courses, seminars, and research opportunities are available in the Department of Mathematical Sciences. Students who wish to pursue graduate degree programs in the traditional areas of applied mathematics, computing, operations research, probability, and statistics as well as other areas of the mathematical sciences can do so in this department.

Close cooperation with the departments of Biostatistics, Electrical Engineering, Geography and Environmental Engineering, Mathematics, Political Economy, Public Health Administration, and others further widens the opportunities available to graduate students. Joint appointments of faculty, joint development and scheduling of courses, joint work on research projects, and dissertation research in special areas under the supervision of faculty in these departments are all routine practices. The result is that a graduate student in the Department of Mathematical Sciences can develop a program in pure or applied aspects of the mathematical sciences that suits his or her abilities and objectives.

"Mathematical science" is not, per se, an independent professional discipline and most to be "m" operations computer of, the pth
The depa obtain tra
The de
summaries the depa

Admissto be ad
must sus
Acmaestrih or h
probable Graduat scores o
the adv
Most mathem
requirec mathem
to begin

Require
The stu
the Ma
a minor gradu
satisfies Lanug
or Rus
student gradu
advises proved m
specific Eac
writing to the Chairman for the
may undertake concurrently a
Application forms and more in-
ified undergraduate majors in any
the Combined Bachelor's-Master's
students should apply by the end
ary additional coursework in the
gram are: (a) a minimum of two
after admission to the program;
requirement described above if the
language requirement is imposed
pletion of a total of at least 145
ory completion of at least eight
atical sciences that comprise a
ser; (e) satisfactory performance
 basic courses approved by the
arch report based on an approved
ork as specified by the adviser.
this program a student should se
work that will meet the above
able in the department office.
three types: (1) a group of basic
1 specialized courses appropriate
1 (3) elective courses chosen to
ication for uses of the ma-
requisites are to be interpreted.
For most students, participation
acquire these skills but it is no-
aster basic material in analysis
probability, together with two
statistical methods or statistical
eling. Normally a student will
first year of residence and wil
the start of the second year.
vanced courses appropriate to
ple programs in popular areas
, mathematical programming-
s are contained in a brochure
available in the department office, but a student with different goals is free to
propose an appropriate program meeting the approval of the research adviser.

Elective Courses Two one-year graduate courses in fields distinct from the
student's specialized area are required. Typical courses in other departments
are computer engineering, econometrics, health systems, mathematics, mathematical
ecology, mathematical economics, physics, psychometrics, systems
tory, and urban studies. The student can construct a minor by choosing both
courses in the same area, though a formal minor is not required. At least one
course should be completed before the student takes the Graduate Board
Examination.

Each student will develop with the adviser a complete program of proposed
course work. This program should not be thought of as a firm contract but as a
basis for planning; it may need to be updated and revised from time to time.
In addition to fulfilling the University requirement of a minimum of two
secutive semesters of registration as a full-time resident graduate student,
the following must be completed to obtain departmental certification for the
Ph.D.: (a) pass examinations focused on the material of the basic courses
and the specialized courses; pass the University Graduate Board Examination;
(b) complete satisfactorily the two elective courses; (c) demonstrate the ability
to read scientific material in French, German, or Russian; (d) acquire some
 teaching experience under the supervision of the faculty; (e) demonstrate a
working knowledge of the utilization of computers in the mathematical sciences;
(f) complete a program of original research leading to a dissertation worthy of
publication.

Facilities

The department maintains a small reference collection of books and journals
in its Commons Room. Office space in Maryland Hall is offered to all resident
grade students. The facilities of the University Computing Center are available
to students for research and instruction, and liberal access to terminals
for time-shared computing is provided.

Fellowships and Assistantships

Teaching assistantships offering tuition fellowships and stipends at competitive
levels are available to qualified graduate students. Research assistantships
funded by grants and contracts from business and governmental agencies are
sometimes available to advanced graduate students engaged in their dissertation
research.

COURSES

Prospective students are invited to discuss with individual instructors the aims and pre-
quisites of their courses; formal prerequisites are listed only to indicate the level of,
iciency expected and can be waived by the instructor for sufficient cause.

Applied Mathematics

21.380(1) Matrix Analysis and Linear Algebra

A second course in linear algebra with emphasis on those parts of the subject which are
useful in analysis, economics, statistics, control theory, and numerical analysis. Topics include: review of linear algebra, decomposition and factorization theorems, positive definite matrices, norms and convergence, eigenvalue location theorems, variational methods, positive and non-negative matrices, generalized inverses. Prerequisite: linear algebra and advanced calculus (11.12-13 or equivalent). Corequisite: 11.365. Offered fall term.

4 credits

24.302(Q) Modern Algebra for Applications
Introduction to finite mathematics. Sets, relations, functions, graphs, groups, Boolean algebras, rings, fields, and lattices; selected applications to modern practical problems in digital computers and data communications. Prerequisite: 11.6-7, or 11.8-9, or the equivalent. Corequisite: 11.11 or 11.13 or equivalent. Offered spring term.

3 credits

24.307(Q) Introduction to the Theory of Games
The elements of two-player zero-sum game theory are presented along with selected applications to military and athletic competition, infinite games and dueling, simple multi-stage games, and an introduction to the many-player theories are discussed. Prerequisite: 11.12-13 or equivalent. Offered fall term 1975-76.

3 credits

24.309(Q) Problems in Applied Mathematics
Selected topics in applied mathematics drawn from the instructor's industrial and government experience. Prerequisite: calculus and linear algebra. Offered spring term.

2 credits

24.349(Q) Combinatorial Analysis

3 credits

24.350 Graph Theory
Connectivity, Euler and Hamiltonian tours, matching, symmetry, extremal problems, planarity, coloring, the Four Color Problem. Attention is directed toward problem solving algorithms, and applications. Together with 24.349, this constitutes an introduction to discrete mathematics. Prerequisite: Linear algebra and advanced calculus. Offered spring term.

3 credits

24.355-356(E,Q) Differential Games
A theory and means of solving problems of conflict in which the two players continuously make decisions to obtain contrary objectives. Control theory is the special case of one-player differential games. But the full theory is more than a mere formal generalization, for the fact that each player must take into account the actions of his opponent makes the two-player case deeper and richer. Applications include pursuit and evasion, control problems with nature as antagonist, military strategy. Prerequisite: A working knowledge of ordinary differential equations and the mathematical maturity of a course in advanced calculus. Not offered 1975-76.

3 credits

24.608 Many-Player Games
This course presents a number of the more successful theories of multi-player games, including the original von Neumann-Morgenstern theory, the theory of the core, and that of the Shapley value. Games with and without side-payments are considered, as are non-cooperative games and their Nash equilibrium solutions. Application to economic decisions are stressed. Prerequisite: 24.307. Offered spring term 1975-76.

3 hours weekly

Computing and Numerical Analysis

24.1(Q) Computer Laboratory: Calculus I
The basic concepts, principles, and theorems of the calculus are illuminated with computational exercises to be solved using a timeshared computer. The problems assigned parallel the topics treated in 11.6 and 11.8. No previous programming or computing experience is required. Corequisite: Concurrent registration in 11.6 or 11.8. Offered both terms.

1 credit

24.2(Q) Computer Laboratory: Calculus II
The basic concepts, principles, and theorems of the calculus are illuminated with computational exercises to be solved using a timeshared computer. The problems assigned parallel
control theory, and numerical analysis. Topics include numerical values, optimization and factorization theorems, positive definite matrices, iterative methods, and inverse iterations. Prerequisite: Linear algebra and advanced calculus. 11.305. Offered fall term.

Games

Game theory is presented along with selected applications to modern practical problems, such as decision making in economics, management, and operations research. Prerequisite: 11.6-7, or 11.8-9, or the equivalent. Offered spring term.

Mathematical Programming—Optimization

3.300Q Foundations of Optimization

A study of the basic principles underlying optimization. Topics include constrained optimization, constrained optimization, saddlepoint conditions, Kuhn-Tucker and Fritz conditions, linear programming, the simplex algorithm, post-optimality, and minimal quadratic programming. Prerequisite: 11.13 or equivalent. Corequisite: 11.305. Concurrent registration in 11.301 is recommended. Offered fall term.

4 credits

3.345Q Introduction to Mathematical Programming

A survey of optimization methods and applications at an elementary level. A wide variety of optimization techniques is studied, including linear programming, graph theory, search techniques, dynamic programming, integer programming, and nonlinear programming.

Mathematical Sciences 201
(classical optimization and Kuhn-Tucker theory). Appropriate for undergraduate and graduate students without the mathematical background required for 24.303. Students who may wish to pursue further work in optimization should consider 24.303. Prerequisite: 11.6-7 and 24.62 or equivalent. Corequisite: concurrent registration in 11.12-13 or 11.11-12. 3 credits

24.609 Advanced Linear Programming
Topics in the theory and application of linear programming, including tightness, primal-dual and other algorithms; transportation problems; the decomposition principle; and rounding. Prerequisite: 24.303 or consent of instructor. Offered spring term. 2 hours weekly

24.610 Nonlinear Programming
Topics in the theory and application of maximizing a linear function subject to linear constraints including the dual simplex, primal-dual and other algorithms; transportation problems; the decomposition principle; and rounding. Prerequisite: 24.303 or consent of instructor. Offered spring term. 2 hours weekly

24.613 Dynamic Programming
A study of the optimization of sequential or multistage decision processes based on the application of the dynamic programming principle of optimality. Both computational and theoretical aspects will be explored. Not offered 1975-76. 3 hours weekly

24.614 Theory of Optimization
The primary objective of this course is to demonstrate that much of optimization theory can be unified effectively by a few geometric principles. Problems of the calculus of variations, optimal control, mathematical programming, approximation, and prediction will be discussed. Prerequisite: 24.303 or permission of instructor. Offered spring term. Not offered 1975-76. 2 hours weekly

24.685-686 Combinatorial Optimization
The study of combinatorial optimization problems, including maximum flow, minimum cost flow, the scaling algorithm, and graph theory. Prerequisite: 24.303. Offered fall term. 2 hours weekly

24.687 Integer Programming
Algorithms for linear programs in which some of the variables are restricted to integer values. Enumerative methods, cutting plane methods, Benders' partitioning algorithm, and heuristic methods. Prerequisite: 24.303 or consent of instructor. Offered fall term. 3 hours weekly

24.689-690 Large Scale Programming
Techniques for solving large mathematical programming problems, including exploitation of the special structure of certain classes of problems. Topics include: column generation, decomposition principle, generalized programming, partitioning. Prerequisite: 24.689. 2 hours weekly

Operations Research
24.351-352(E,Q) Inventory Systems
The art of building and analyzing models as applied to inventory systems. Theoretical and quantitative approaches to problems of balancing carrying costs, shortage costs, and replenishment costs. Optimal decision rules pertaining to "when to replenish" and "by how much." Deterministic and probabilistic demand, zero and non-zero lead-time, price discounts, multi-item systems, equivalence of systems, choice of optimal policies, heuristic decisions. Application of sensitivity analysis, simulation, mathematical programming, Markov chains, and computers. Prerequisite: 24.62, 24.315 or equivalent. 3 credits

24.353(E,Q,S) Foundations of Management Science I
The organizational environment in which the methodologies of management science are applied. Consideration is given to organization structure and behavior and to the techniques of decision making. Not offered 1975-76. 3 credits

2343(E,Q) Financial Management Systems
An introduction to management science and quantitative techniques. Prerequisite: 24.315, 24.351, 24.352. 3 credits

24.477-478 Sen Policy-relevant energy growth. 1 hour weekly

**Optimization** of maximizing a linear function subject to linear, primal-dual and other algorithms; transportation; and upper bounding. Prerequisite: 24.303 or 24.301.

Nonlinear optimization problems are developed. Topics include convex programming, decomposition algorithms, gradient and geometric programming. Prerequisite: 24.303. Offered spring term.

**Game Systems**


**Seminar in Policy Analysis**

Policy-relevant modeling efforts and technology assessments in one or more problem areas such as energy, food, monetary control, land use, housing, poverty, pollution, and economic growth. 3 hours weekly.

**Probability and Statistics**

14.11-12(Q) **Statistical Analysis**

Introduction to the concepts of probability and statistics and a general survey of useful statistical methodology. Time-shared computing is used to gain experience with (simulated) random phenomena, to perform tedious calculations useful in demonstrating concepts, and to perform statistical analyses of data. No previous experience in computing is required. Topics include: Fall term: Probability; random variables; sampling and handling sample data; introduction to statistical decision theory; basic ideas of classical estimation and testing. Spring term: Inference for one population (including nonparametric methods), comparing two populations (including nonparametric methods); multinomial data; regression (linear, polynomial, multiple); correlation; the analysis of variance. The first term is intended to introduce the basic ideas used by statisticians and to provide a basis for the second term, which uses these ideas to develop specific methodology. The course covers the most common ideas and methods which occur in the literature of economics, psychology, sociology, and other areas of empirical research. This is a general survey course which is directed toward potential users of statistical ideas and methodology; students who may wish to pursue further work in probability or statistics or who wish to delve more deeply into the theory of these subjects should elect 24.315-316 or 24.321-324. Calculus is not a prerequisite to this course; students who have studied a year of calculus should consider 24.315-316. Prerequisite: Four years of high school mathematics.

4 credits

14.31(E,Q) **Introduction to Probability**

Probability models, random variables, distributions, stochastic independence, conditional probability. Emphasis is placed on applications of probability theory to other scientific disciplines rather than on rigorous demonstrations of mathematical results. This course can be followed by further work in statistics (24.316), regression (24.332), or stochastic processes (24.117). However, students who may wish to pursue graduate work in probability, stochastic processes, or statistics should consider 24.321. A year of calculus is an essential prerequisite to this course. Prerequisite: 11.6-7 or 11.8-9 or the equivalent. Offered full term.

4 credits

14.46(Q) **Introduction to Statistics**

Principles of statistical reasoning. Application of statistical inference to a variety of problems in the physical, biological, and behavioral sciences; data analysis. Prerequisite: 24.315 or consent of instructor. Offered spring term.

4 credits

14.37-18(Q) **Stochastic Systems**

Studies of the behavior of stochastic systems. The course begins with a review of analytic techniques and a study of stochastic processes sufficient to understand queueing phenomena. Compound distributions, solution of differential-difference equations by means of generating functions, discrete and continuous time Markov processes, time-homogeneous
immigration-emigration, and birth-death processes are among the topics considered. Stochastic systems such as single and multiple channel queues, Erlang systems, interference systems, priority queues, and sequential queues are examined for their unique characteristics and with an orientation toward application to real-world problems. Prerequisite: 24.315-316 or consent of instructor.

3 credits

24.321(Q) Introduction to Probability Theory
An introduction to probability theory as a mathematical discipline. Probability spaces, combinatorial probability, random variables, expectation, independence, transforms, and convergence. Important probability distributions. Limit theorems for sums of independent random variables. Emphasis on establishment of mathematical results rather than for applications of probability to other fields. Provides a foundation for further study in probability, stochastic processes, or statistics. Prerequisite: 11.12-13 or equivalent. Corequisite: 11.30 or equivalent. Offered fall term.

4 credits

24.322(Q) Introduction to Stochastic Processes
Theory of Poisson processes, Markov chains, Markov processes, and renewal processes; applications illustrative of important mathematical principles. Treatment of dependence, structural properties, sample path behavior and limit theorems. Development of mathematical results is emphasized and facility with basic techniques of analysis is assumed. Prerequisites: 24.321 and 11.305 or equivalent. Offered spring term.

4 credits

24.324-325(Q) Introduction to Statistical Theory

3 credits

24.332(Q) Least Squares and Regression Analysis
Theory and applications of least squares and multiple linear regression (and correlation). Weighted least squares, estimation of error, regression in terms of linear vector spaces, reduced and adjusted regression analysis, non-linear regression, and iterative non-linear least squares estimation, introductory analyses of variance and covariance, orthogonal polynomials, random regression analysis. Prerequisite: 24.315-316 or 24.321-324; linear algebra or consent of instructor. Offered fall term.

3 credits

24.333(Q) Design of Experiments
Experimental design principles and applications. Theory of singular linear models: estimable functions, generalized inverses and their applications in design analyses. Completely randomized, complete block, latin square, factorial and balanced and partially balanced incomplete block designs. Multiple comparisons, fractional replications, transformations, and the analysis of covariance. Random effects, mixed models and variances of components analyses. Prerequisite: 24.332. Offered spring term.

3 credits

24.334(Q) Statistical Methods
Statistical methods and their implementation are discussed. Necessary theory is considered but the emphasis of the course is on methodology. Topics include estimation and testing in one and two sample situations; contingency tables and goodness of fit; linear regression; correlation; analysis of variance. Prerequisite: 24.321 or consent of instructor. Offered spring term.

3 credits

24.336(Q) Stochastic Processes in Biology and Medicine

3 credits

24.338(Q) Sampling and Survey Methods
Theory and application of sampling finite populations. Design of surveys; simple random,
Processes are among the topics considered. For example, queueing, Erlang systems, and sequential queuing are examined for their unique contributions to real-world problems. 

Theory


Statistical Inference

Statistical inference and Bayesian inference. First semester: General decision theory and its applications with game theory; completeness and sufficiency; unbiased tests; invariant tests; robustness; sequential analysis, sequential choice of experiments, stopping rules. Second semester: Large-sample theory; maximum-likelihood estimates; likelihood-ratio tests; chi-squared tests; distribution-free methods; chi-squared tests; minimum chi-squared estimates; asymptotic relative efficiency, contingency tables, and information theory; estimation of density functions. Prerequisite: 24.601-602 (may be taken concurrently with approval of instructor).

Analysis


Medical Statistics

Statistical methods in medical research. Topics include tests of significance, estimation, hypothesis testing, regression analysis, and categorical data. Prerequisites: 24.321 or consent of instructor. Offered spring term.

Reliability Theory

Estimation of reliability of components and systems; point estimates and interval estimates; failure data by attributes and by variables; models for systems in series, parallel, and
mixed; extremal distribution; IFR and IFRA distributions; optimal design, inspection, repair, and replacement of systems. Prerequisite: 24.324. 3 hours weekly
24.659 Sequential Analysis
Wald's sequential probability ratio test; operating characteristics, sample size, and optimal properties; fundamental identity of sequential analysis; Bayes and minimax sequential decision rules; invariant sequential decision problems; sequential estimation; sequential design of experiments. Prerequisite: 24.324. 3 hours weekly
24.661 Stochastic Processes in Continuous Time
Theory of stochastic processes: measurability, separability, sample path properties, Brownian motion and diffusion processes. Continuous time martingales. Markov processes. Prerequisite: 24.601-602 and 24.322 or equivalent. 3 hours weekly

Potpourri
24.99(Q) Independent Study in Mathematical Sciences
Reading, research, or project work for undergraduate students as arranged individually between student and faculty. Offered both terms.
24.395(Q) Special Topics in the Mathematical Sciences
Special topics selected by the faculty for formal coursework according to the needs and interests of students in residence.
24.600 Mathematical Sciences Department Seminar
A variety of topics discussed by speakers from within and without the University. Required of all resident department graduate students. Offered both terms. 1 hour weekly
24.695 Special Topics in the Mathematical Sciences
Special topics selected by the faculty for formal coursework according to the needs and interests of students in residence.
24.699 Special Studies and Research
Reading, research, or project work for graduate students as arranged individually between student and faculty. Offered both terms.

Mathematics

The Department of Mathematics offers opportunities to students who are interested in mathematics, whether as a future career or as an adjunct to other fields. A very broad selection of courses at various levels is maintained, and over thirty courses are offered each term by a faculty of international distinction.

A great flexibility of programs is a departmental tradition, and able students are encouraged to move ahead as swiftly as possible. Students in the junior and senior years frequently take graduate-level mathematics courses, and serious students can be admitted for graduate study while still completing requirements for the B.A. degree.

Courses through the 300 level are predominantly in the domain of analysis, several of them especially designed for students in other departments. At the graduate level, most course offerings are naturally in the areas of chief importance in our graduate program, which is run by widely known experts in analysis, algebraic geometry, algebraic number theory, and topology.

The Faculty
Professor Joseph H. Sampson (Chairman): differential geometry, global analysis, algebraic geometry.
Professor John M. Boardman: algebraic and differential topology.

206 Mathematics