DEPARTMENT OF MATHEMATICS

期 airperson of Departmens Asstant Professors: KOWARSKI, PARC Lecturers: BOHUN-CHUDYNIV, Professor: GEWIRTZ, AAVS,* MCMILLAN, WANG, WILLIAMSON, LE, MODLIN, PROCTOR, RILEY, ACKERMAN, BOWDEN, EDWARDS, STILLS.
OBJECTIVES OF THE DEPARTMENT: It is the purpose orderliness of thought, and students in developing an appreciation of the power, precision of expression in mathematics and this process ideals of perfection as to necessary for the study of other subjects. In will be formed. Students who complete a logical structure and correct mental habits wilhing of mathematics on the secondary major in the department may go into the telated activities in government, business or level or go into mathematics or computer related enable the student to meet admission industry. A proper distribution of

THEMATICS: Students desiring a major in REQUIREMENTS FOR A MAJOR IN MATHETer hours of mathematics on 300 and 400 mathematics must earn at least twenty semester courses before entering 1701.(50)241levels, and if he takes college mathematics 1701.(50)242, he may follow either of two 1701.(50)241-1701.(50)242, or (2) Mathematics 1701.(50)121, 1701.(50)126, 1701.(50)241, 1701.(50)242. In addition, the following 1701.(50)113, 1701.(50)114, 1701.(5) Mathematics 1701.(50)215) 1701.(50) 1701.(50)413; and courses must be completed. one course in algebra: Mathematics 1701.(50)322 or 1701.(50)452. In general, majors one course in geometry. (50)450, 1701.(50)451 or $1701 .(50)$ end the sophomore year and from Mathematics $1701 .(50 t i c s 1701 .(50) 242$ by the end mathematics on the 1701.(50)300 should complete Mathemsiderably more courses in mathe 1902.(66)205-1902.(66)206. they usually will take The supporting courses are Physics two of the following leve than required. urged to include among their elective are strongly ura and a year of plane languages: German, French, or Russian. A student who has comped to pursue Mathematics 1701.(50)11, necessary in order to geometry should be prepared the Mathematics Department is mathematics course 1701.(50)121. The approva1.(50)215, 1701.(50)216 and any maintain a high quality of pursue Mathematics (50)305. Only those students who C or better is necessary for numbered above 1 por to pursue these courses. A grade of C or
work will be app mathematics sequences above 1701.(50)11.
Students are assigned beginning courses in miven to all entering freshmen during
in mathematics, chemistry, biology, registration. students who plan to major in mathematics, Qualified students whology, or science education shoudit for Mathematics physics, economics, psychology, ore student. who receives credit for Mathematics

Morgan state 1975-76

1701.(50)113-1701.(50)114 cannot thereafter receive credit for Mathematics 1701.(50)111, 1701.(50)121 or 1701.(50)126. Also, a student cannot receive credit for Mathematics 1701.(50)110 if he has previously received credit for any course in Mathematics numbered above 1701.(50)110. High school deficiencies may be removed by passing Mathematics 1701.(50)110. In this case no college credit will be given.

Honors Program

After a student has completed Mathematics 1701.(50)215 and 1701.(50)242, he may be invited by the Department of Mathematics to study for honors. In order to be eligible for participation in this program, a student's scholastic standing in terms of grade or honor points shall not be less than 3.0 in general average and not less than 3.0 in all mathematics courses completed. The following mathematics courses on the upper level must be completed with high distinction: Mathematics 1701.(50)304, 1701.(50)305-1701.(50)306, 1701.(50)312, 1701.(50)413, 1701.(50) 322 or 1701.(50)421, 1701.(50)451 or 1701.(50)452. It is recommended that both 1701.(50)451 and 1701.(50)452 be completed.
1701.(50)010, $50.020,50.030,50.040$ COOPERATIVE WORK PROGRAM-0 credit.
1701.(50)107 FUNDAMENTALS OF MODERN MATHEMATICS-Four hours; 3 credits. Intended primarily for elementary education majors, this course covers sets, mathematical logic, structure of the number system, and the development of the principles of arithmetic and algebra from the laws of the number system.
1.(50) 108 FUNDAMENTALS OF MODERN MATHEMATICS-Three hours; 3 credits. A continuation of Mathematics 50.107 , this course treats mathematical systems, topics from algebra, basic statistical measures, and intuitive geometry.
1701.(50)110 FUNDAMENTALS OF MATHEMATICS-Four hours; 3 credits. This course is designed for those students with limited mathematical background. Emphasis is placed upon teaching students how to study mathematics. Elementary mathematics will be reviewed from a modern point of view in which there will be a discussion of sets with application to geometry, number system, and algebraic structures.
701.(50)111 COLLEGE ALGEBRA-Three hours; 3 credits. Quadratics, progressions, permutations, combinations, complex numbers, binominal theorem, determinants, and other selected topics will be presented in this course.
1701.(50)113 INTRODUCTION TO MATHEMATICAL ANALYSIS-Four hours; 4 credits. This is the ified course in modern college algebra, analytic trigonometry, and analytic geometry.

TRODUCTION TO MATHEMATICAL ANALYSIS - Four hours; 4 credits. This
course is a continuation of Mathematics 1701.(50)113. Prerequisite: Mathematics 1701.(50)113 with C or better.
1701.(50)121 PLANE TRIGONOMETRY - Three hours; 3 credits. The following topics will be included in this course; definitions and relations of trigonometric functions, logarithms, solutions of right and oblique triangles, trigonometric identities and equations.
01.(50)126 ANALYTIC GEOMETRY - Four hours; 4 credits. This course includes a discussion of Cartesian coordinates, loci and their equations, translation and rotation of axes, parametric representation, polar coordinates, and loci in space. credits. This course is designed as a beginning deals with organization and characteristics of students planning further work in programming. It deals wicatents to their areas of interest. computers, basic programming, and applin - Four hours; 3 credits. This course deals with
1701.(50)152 COMPUTERS AND PROGRAMMING - Four hours, symbolic coding and assembly systems, procell be undertaken to illustrate the principles and diagramming techniques. Several techniques. Prerequisite: Mathematics 1 IOTS
1701.(50)215 FOUNDATIONS OF ANALYSIS AND SETS system and a brief introduction to the calculus of sets, axiomatic treatment of eins, fields and order properties will be included. Taken concepts of groups, rings, 1701 .(50) 241 with C or better.
concurrently with or after 1701.50241 h
1701.(50)216 FOUNDATIONS OF ANALYSIS AND SETS-T continuation of Mathematics $1701 .(50) 21$ and mappings; union, intersection and product of graphs and correspondences; functions and axiom of choice and Zorn's lemma. Prerequisite: families of sets; coverings and partiossion of instructor.
. Basic concepts of data, linear lists,
170.1.(50)231 DATA STRUCTURES-Three hours; 3 credis. Storage systems and structures, data strings, arrays. Representation of tres specification of data structures. Prerequisite in programming languages and formal specification of 1701.(50)152.
1701.(50)241 DIFFERENTIAL AND INTEGRAL CALCULUS - Four hours; 4 credits. This course develops the theory and formulae for differentiation and integration with applications to geometry and physics. Prerequisite: Mathematics 1701.(50)114 or 1701.(50)126.
701.(50)242 DIFFERENTIAL AND INTEGRAL CALCULUS-Four hours; 4 credits. As a continuation of Mathematics 50.241 the following topics will be included: definite integrals, power series, multiple integrals, partial differentiation and simple differential equations. Prerequisite: Mathematics 1701.(50)241.
1701.(50)251 NUMERICAL METHODS AND PROGRAMMING-Four hours; 3 credits. This course is an introduction to numerical algorithms fundamental to scientific computer work. It inefiting, solution of algebraic and transcendental equat of differential equations, and error estimation. interpolation, differencing, numerical solution by using an algebraic language. Prerequisites: Computer solutions to problems will be attained by a and permission of the instructor.
1701.(50)304 INTRODUCTION TO DIFFERENTIALER Differential equations with application to first course dealing with methods of solving are included: equations of the first order and first geometry and physics. The following topics are first degree; singular solutions; linear equations degree; equations of the first order but not
with constant and variable coefficients. Prerequis; 3 credits. The following topics will be in this
1701.(50)305 ADVANCED CALCULUS-Three hours, 3 cred ins. course: limits and continuity, derivatives, Rels, improper integrals. Prerequisite: Mathematics differentiation, line, surface and space integrals, in. 1701.(50)242. elementary functions of a complex variable, Cauchysions of differential equations by series. and poles, power series, introduction

212 / MORGAN STATE COLLEGE
1701.(50) 312 INTRODUCTION TO MATRICES - Three hours; 3 credits. This course is a study of linear transformations and matrices, linear vector spaces, equiviant factors and elementary quadratic and hermitian form, Cayley-Hamilto
1.(50)322 SOLID ANALYTIC GEOMETRY - Three hours; 3 credits. This course leans heavily on determinant theory to discuss lines, planes and transformation of coordinates in space; quadric surfaces, the general equation of the second degree, and properties of quadrics. Prerequisite: Mathematics 1701.(50)242.
(50)413 INTRODUCTION TO MODERN ALCEBRA - Three hours; 3 credits. In this course the number system and elementary theory of groups will be studied. Rings, integral domains, fields and ideals as well as an introduction to polynomials and matrices overics courses or by considered. Prerequisite: Ma
permission of the instructor.
1701.(50)421 HIGHER GEOMETRY - Three hours; 3 er geometrics. Some topics discussed are projective, advanced Euclidean and non-Euclidea, Desargues' theorem, duality, projectivities; transformation theory, projective theory of conics, Duisite: Mathematics 1701.(50) 126 with C or parabolic, hyperbolic and elliptic geome better or by permission of the instructor.
1701.(50)431 MATHEMATICAL THEORY OF STATISTI 4 for the study of statistics will be presented. to the probability theory necessary to serve as a basis representation of frequency distributions; The following topics will be included. graphious special distribution functions including the moments and moment generating fund normal distributions; joint frequency functions, linear and Bernouilli, Poisson, rectangular and normale 1701.(50)242 with C or better.
multiple correlation and regression. Prerequisite: Mas. Three hours; 3 credits. This course is a
1701.(50)432 MATHEMATICAL THEORY OF STATISTIC distribution, Student's distribution, the Fcontinuation of Mathematics 50.437. The norm be studied. Principles of testing hypotheses and distribution, and the Chi-Square distrib as small sample theory. estimation will be considered as well as shatication of Psychology

The two courses in Mathematical (24)311-2204.(24)312, since Mathematics 1701.(50)431-2001.(70)316-70.317 or Economics 2204. 50.432 emphasize the mathematical theory of statistics and requir prerequisite.
1701.(50)450 SENIOR SEMINAR-Three hours; 3 credits. The aim here is to aid the student in integrating his knowledge of mathematics and in developing to a luding courses required for solving ability. Materials will be selected from a number of sources including is required of senior a major and topics which are not part of any regular conference course.
mathematics majors who do not present credit . This course is designed for seniors in the Honors
1701.(50) 451 CONFERENCE COURSE -3 credits. This coursed to one or more topics in advanced Programs and others admitted by the chairmang independent study with timely conferences with mathematics. Much of the work is done through independents.ur the instructor.
1701.(50)452 CONFERENCE COURSE-3 cr

This course is the same type as 1701.(50)451 and
operates independently of 1701.(50)451.
Three hours; 3 credits. This course 1.(50)471 NUMERICAL ANALYSIS AND PROGRAMMING - Three hours, covers methods for deriving numerical results for mathming techniques will also be included. to the precision of the results. Computer Programm.
Prerequisite: Mathematics $1701 .(50) 242$ with 2 ored include
1701.(50)479 POINT SET TOPOLOGY - Three hours; 3 credits. The topics mappings. Prerequisite:
point set theory of the line and plane,
Mathematics 1701.(50) 242 with C or better.

DEPARTMENT OF MATHEMATICS

A Suggested Course Outline for Mathematics Majors

es to Student: (1) Advisors will help you select courses for your first year. They will the record of courses taken previously, test scores, and your expressed interests
The outline is a guide not a rigid pattern.
As you become better informed on what opportunities exist for graduate study d/or employment after graduation, consult advisors on how adaptations might be ide in your particular plan for studies.
Courses marked (H) are part of the Honors Program but may be taken by other idents by permission of the instructor.
If you plan to be a mathematics teacher, inform the Departmental Chairman to at effect by the sophomore year.

Freshman Year

201-102, you may take 3 credits of Political Science 2207.(68) and 3 credits (Instead of Social Science 101-102, you may take 3 credits of Political Science 220 . 24 but we suggest that they be taken after of Sociology 22 our first year.)
*(Instead of 1701.(50)113-1701.(50)114, one may take 1701.(50)111-1701.(50)121-1701.(50)126. Jepending on the courses for which the student is prepared, he may begin his college mathematics with 1701.(50)113 or 1701.(50)111 or 1701.(50)121 or 1701.(50)126 or even 1701.(50)241, hut not 1701.(50)114.)

The onditional mathematics courses open to students who have not reached calculus are the computer courses.)
(Physical Science will provide valuable knowledge, but it cannot replace Physics 205-206 which is (Physical Science will provide valuable Neither can it replace Biology or Biological Science, one of which is required for a degree.)
(The department recommends, but does not require, that majors have at least a reading knowledge of at least two foreign languages: French, German or Russian.)

214 / MORGAN STATE COLLEGE $1975=76$

Sophomore Year

FIRST SEMESTER			SECOND SEMESTER		
urse No.	Title	Sem Hrs.	Course No.	Title	Sem. Hrs.
1701.(50)241	Mathematics	4.	1701.(50)242	Mathematics	4
1701.(50)215	Mathematics	3	216	(H) Mathematics	3 (H)
4903.(44)201	Humanities	3	4903.(44)202	Humanities	3
2205.(40)201	History	3	2205.(40)202	History	3
0835.(60)	Physical Education Electives	3		Electives	3-6
		17			17

Junior Year

Course No.	FIRST SEMESTER		SECOND SEMESTER		
	Title	Sem. Hrs.	Course No.	Title	Sem. Hrs.
1701.(50)304	Mathematics	3	1701.(50)305	Mathematics	3
1701.(50)305	Mathematics	3	1701.(50)306	(H) Mathematics	$3(\mathrm{H})$
1902.(66)205	Physics	5	1902.(66)206	Physics	5
	General Ed. Req.*	6		Ceneral Ed. Req.*	6
		17			17 (34)

A geometry (1701.(50) 322 or 1701.(50)421) 3 credits per course
*Two courses from special group of Art, Music, English, Humanities and Philosophy 3 credits per course. See p. 61.
Additional mathematics courses are available each year. Statistics, 1701.(50)431 and 1701.(50)432. may be taken after completion of 1701.(50)242.)

Senior Year

FIRST SEMESTER

Course No.	Title	Hrs.
(1701.(50)312 or		
1701.(50)450 or		3
1509.(58)402	Philosophy Electives**	$\begin{aligned} & 2 \\ & 9 \\ & \hline \end{aligned}$
		17

* Preferably both

** 20 mathematics credits on 300 and 400 levels.
*** Given each semester.

SECOND SEMESTER

	SECOND SEMESTER		
Sem. Hrs.	Course No.	Title	Sem. Hrs.
3	1701.(50)452	(H) Mathematics	$3(\mathrm{H})$
	1701.(50)450	Mathematics***	
3		Electives**	15
			18
2			/(12)

