MATHEMATICS

Professors MYERS (head), BIRD, DIECKMANN, JAMES, OLDS, PURD Associate Professor JAMISON; Assistant Professors DANIELS, DUNCA HOLDER, LOVAGLIA, MARKS, PRESTON; Instructors HALL, HO GATT, LARSEN, O'DÓNNELL.
The courses in the mathematics department are designed to satisfy the needs students with varying objectives. All students in science and engineering, as wel those who expect to do quantitative work in any of the social sciences, will adequate instruction for their needs. Prospective teachers in the elementary secondary schools are able to obtain a minor or major in the field or mathen The A.B. degree can be earned with major in pure or applied mathematics, the M.A. degree in mathematics is available when accompanied by a teac credential curriculum. The general secondary teaching credential with mathem as the major or minor subject can be completed in the department. The won quired for a maior in this department presupposes at least sis semesters of pro school mathematics, including trigonometry. Defic
selection from courses 6,7 , and 8 , or 16 and 18 .
The training for the position of mathematician in industry or in govern employ is available, and the demand for graduates both in teaching and nontea fields vastly exceeds the supply.
For a course to count toward either a major or a minor in mathematics grade received must be "C" or better.

1. M.A. DEGREE WITH MAJOR IN MATHEMATICS

The student holding an A.B. degree in mathematics comparable to that out in Item 2, below, can complete the work for the M.A. degree and the Cali General Secondary Credential in twelve months of graduate work, provided ficient professional training has been included in the undergraduate curricu See the Graduate Division Bulletin of this college for further details.
2. A.b. DEGREE WITH MAJOR IN MATHEMATICS (PRE-SECONDARY)

The five-year program outlined below qualifies the student for the A, B. with a major in mathematics at the end of four years. Required courses Mathematics $30,31,32,128,134$, at least one of 115,116 , or 118 , togethe additional courses to total sixteen units of upper division mathematics.
Since the universities require twenty to twenty-four units in upper mathematics for graduation, the student expecting to transfer after the A.B. should include in his undergraduate program more than the minimum fig shixteen units shown.
3. A.B. DEGREE WITH MAJOR IN MATHEMAIICS (NON-TEACHING)

Students following this four-year curriculum for work as mathematio industry will pursue what is essentially the same as the outlined program, difference being that in the upper division years the courses in education difference being that in courses in advanced physics, chemistry, and engineering depe upon the type of industry in which the student expects to seek employme addition, the student may elect to replace the Physics 2A, 2B, in the soph year by the three semester course Physics 50,51 , and 52 . See the advisa further information.

4. JUNIOR HIGH SCHOOL MAJOR IN MATHEMATICS

This major is designed to accompany the education major for the student who plans to teach in a junior high school. To qualify for this major the student should complete Mathematics 30, 31, Education 393, 394, and ten units of additional lectives in mathematics, including eight units of upper division courses.

5. MINOR IN MATHEMATICS FOR THE A.B. DEGREE

This work is designed to develop strength in a particular branch of mathematics In the student who will enter industry in one of the fields of application of mathematics and to make available courses in pure mathematics to the inverested student of the humanities. Courses should include Mathematics 30,31 , and six units of upper division mathematics (selected in consultation with the department head).
6. MINOR IN MATHEMATICS FOR ThE A.b. DEGREE (PRE-SECONDARY)

This program will provide the student with a minor for his A.B. degree at the ond of four years which will be readily expansible in a fifth year into a minor in nathematics for the general secondary credential. Courses should include Matheaics $30,31,128$, and at least one of 115,116 , or 118 , to total sixteen units.

7. MINOR IN MATHEMATICS FOR The A.B. DEGREE (TO ACCOMPANY the general

 elementary or general. junior high school credential) Courses should include Education 393, 395, and eight units of electives in hematics including at least two units of upper division mathematics courses.
8. GENERAL SECONDARY CREDENTIAL WITH MAJOR IN MATHEMATICS

 The student holding the A.B. degree with mathematics as the major subject from on accredited institution and with an acceptable grade average will be able to complete in one year the departmental requirements for the general secondary credential with a major in mathematics by following this program. In certain instances he student who holds the A.B. degree in a subject other than mathematics but pho has had a number of courses in mathematics will be able to complete the While there follows a in this department by the end of the fifth year.Helude Mathematics 30 detailed outline of this five-year program, courses should Helude Mathematics 30, 31, 32, 134, 128, one of 115, 116, or 118, Education 394, Hd six units of upper division mathematics electives, together with Mathematics This and three units of graduate mathematics electives, to total thirty-six units. femester of speech asks all majors to present a year of college physics, and a semester of speech. In addition, students should present upper division credit in gebra, synthetic geometry, and advanced analysis. Course work in fields of application of mathematics, such as statistics, astronomy, navigation, physics, applied mechanics, surveying, descriptive geometry, and finance is desirable.

9. GENERAL SECONDARY CREDENTIAL WITH MINOR IN MATHEMATICS

4. Athough his major interest is in another field, the student who completes this

 minor will be qualified to teach a course in mathematics if called upon to do so ouses should include Mathematics 30, 31, 128, one of 115, 116, or 118, Education 184, and Mathematics 201A.
PROGRAM RECOMMENDED FOR MATHEMATICS MAJORS

II mathematics majors are requested to include in their programs: one year of eglage language (French or German); one year of college physics (generally fiysios 2A, 2B); one semester of public speaking (Speech 2A); a minor (in sybject taught in high school when the student plans to continue for the teaching
credential).
$1955-56$

| Fall Semester | Freshman Year |
| :--- | :--- | :--- |
| Units | |

The required professional courses have been changed effective September, Alrhough the new courses are included in the above program a student sional courses.

See Teacher Education section of this Bulletin for further details.

ESSCRIPTION OF COURSE

A. Fundamentals of Arithmetic. For students who need to strengthen knowledge of arithmetic computation and reasoning.
One unit; fall, spring
3. Slide Rule. Use of the slide rule in calculations involving multiplica division, powers, roots, logarithms, trigonometric functions, and in the solution. right and oblique triangles. Prerequisite: Trigonometry (may be taken cone rently).

One unit; fall, spring
Bird, Loya
4. Mathematics for Nurses. A review of the fundamental processes of arithme tic as applied to problems in nursing, followed by practice in the use of the m and apothecaries systems in the making of solutions and in computing dosages

Two units; fall
6. Basic Mathematics for General Education. Quantit mathematical ideas as processes with ical students. Me graphs. Suited to as processes with numbers, proportic for students with students with little or no high school Three units; fall spring one year algebra and one ye Hree units; fall, spring
7. Intermediate Algebra. An intensive course in a maternal through progressions; open only to students wi mathematics ($11 / 2$ years of algebra and 1 year of geome three units; fall, spring
8. Trigonometry. An elementary course with applicat with at least 3 years of high school mathematics (2 yea Thery), or credit in Math. 7.
Three units; fall, spring
16. Algebra. This course together with Math. 18 c 6,7 , and 8 in one year. Exponents, fractions, linear eq equations, radicals and quadratic equations.
Five units; fall, spring
18. Algebra and Trigonometry. Quadratic systems, 1 ninal theorem, inequalities, complex numbers, and ion plane trigonometry. Prer Five algebra or Math. 16.
Five units; fall, spring
21. Mathematics of Finance. Simple interest, discou pound interest, annuities, amortization, depreciation. Bri in course. Prerequisite: Two years of high school algebi Five units; fall, spring
30. Analytic Geometry and Calculus. Plane and solid momety mometry is assure competence a placement examin reuirem is given on the first day of this course. Stude Pive units; fall, spring expected to take Math. 8 or 18 pive units; fall, spring
31. Calculus. Differentiation and integration of tra pplications of derivative, differential, and integral. Prer Five units; fall, spring
32. Intermediate Calculus. Partial derivatives, multip diferential equations as included in the elementary Th.
Three units; fall, spring
35T. Introduction to Calculus. The differentiation ar anctions. This is a transition course designed to prepare nalytic geometry as a separate subject for subsequent re
Two mits; fall ith
50, Elementary Statistics. Graphical representation; coney, dispersion, and skewness; the normal curve; tre correlation. Prerequisite: $11 / 2$ years of algebra or Math. 6
Three units; spring

Upper Division Courses

In the following group of courses those marked with mankernate years. Thus if a student plans to take a partic manked he must register for it at the first opportunity aft tgaus since it will probably not be offered again during 104.* History of Mathematics. Historical survey of rom earliest beginnings to modern times. Prerequisite: the instructor.
Two units; fall (offered in 1956-57)
Given in alternate years.

6F, BULLETIN

applicants must check with the Admis. asfactory progress toward completion of cation.
F lests four faculty members of his acquaint. y with ratings on forms which accompany iculty members should not all be from one as many as two from the college of lase
int is also required to secure a rating in nittee. Frequently the course in Speech $2 A_{i}$ rt. In other cases the applicant will appear. d trye students frequently are required to: s required to interview one of the Associate tion interviews are scheduled.
ring for teacher-education approval, applie st test and a personality reactionnaire. Malke m 26.
tory rating on a thorough physical examinat screening procedure. This examination mis aterviews may be scheduled. It is also nece e Health Office within six months of place six months of issuance of the credential, eneral weakness manifested in the aforeme rable traits of character or personality ma or teacher-education. intil all the prerequisites to acceptance in courses in education have teacher-educatio

F TEACHING CREDENT!ALS

of the state colleges received teaching creden ${ }^{2}$ Thereafter, in accordance with state regt iited term. The expiration date is shown wre named by the State Department of Edd holder to apply for renewal directly to th ornia.
may secure California public-school-servi ic requirements and presentation of eviden c certified copies thereof, verifying dedar

DEGREE REQUIREMENTS

THE BACHELOR OF ARTS DEGREE

This degree is offered with majors in the several fields listed on page 30 . Specific requirements for the degree in each ficld are outlined in the departmental sections of this bulletin. All candidates for graduation must satisfy the general regulations described below, as well as those outlined by the major department.

THE BACHELOR OF SCIENCE DEGREE

This degree is offered at San Jose in the fields of engineering, medical technology and nursing. The general requirements described below and the specific courses listed in the engineering, medical technology and nursing sections of this bulletin, must be completed for graduation.

THE BACHELOR OF EDUCATION DEGREE

The purpose of this degree is to increase the professional competence of California public school teachers. To be eligible for candidacy the student must be a California public school teacher, who has earned a minimum of 60 semester units of standard college work. For further information refer to the teacher-education section of this bulletin.

THE MASTER OF ARTS DEGREE

The master of arts in the fields of school service was authorized for San Jose State College in 1949 by the State Board of Education. Graduate credit earned at San Jose subsequent to September 1, 1946, plus a maximum of six semester units from other accredited graduate schools, may be applied toward the 30 semester units necessary for the degree. All graduate credit applied toward the master's degree must be earned within seven years of the date the degree is awarded. Detailed requirements are given in the Graduate Division Bulletin.

UNIT AND RESIDENCE REQUIREMENTS

A total of 124 semester units of credit must be eamed for graduation with the bachelor of arts and bachelor of education degrees. For the bachelor of science degree in engineering, 132 semester units are required. Of these amounts, for the bachelor of arts and bachelor of science degrees, 30 semester units must be earned atisan Jose State College in on-campus (not extension) courses.
The bachelor of education degree requirements call for 30 semester units of credit earned in residence. Of that amount, at least 12 semester units must be Ceaned in courses given on the San Jose State College campus, after the completion Tof 90 of the 124 semester units. The remainder of the residence requirement may be satisfied with credit earned from the college through extension or on the basis of examination.
Whar the master's degree, 24 of the required 30 units of graduate credit must be rearned in residence.
34 x

SCHOLARSHIP

Ant over-all average of " C " (2.0) or better is required for graduation. Candidates orfteaching credentials must have a total average of better than "C" (see "Approval of Candidacy for Teacher Education"). Graduate programs at San Jose andin many other colleges call for better than a " C " average in the undergraduate nork. Students planning to do graduate work should consult early in their undergraduate years, the graduate curricula requirements of this or other colleges.

GENERAL EDUCATION

duhe college offers a number of courses designed exclusively to meet general education needs in particular areas and many other courses used partly to meet theseneeds. There is a continued effort to adjust general education programs to ndividual students in terms of their interests, past experiences, and needs, through advasers and personnel counselors. Programs of students in all departments are

Freshman Year
1/2Physical education
2 Engl. 2B-English Composition
3 Hist. 17B-U. S. History.
5 Math. 31-Calculus
5 French or German 1B. Sophomore Year

Physical education \qquad ${ }^{1 / 2}$
Hyg. 3 or 11-Hygiene sics
\qquad Phys. 2A-General Physics 2
Phys. 2A-General Physics Literature, Philos, and/or Arts Math. 32-Intermediate Calculus. Math. 3-Slide Rule \qquad $-\quad-\quad 3$ Junior Year
Literature, Philos, and/or Arts. -3 3
Mathematics -...-.-............-. 2
Ed. 123-Audio Visual Laboratory.-
Minor or electives \qquad 1
-1
-3
General Education electives
 Senior Year

Mathematics \qquad 4
\qquad Instruction 4
8
Minor or electives 9 Mino
Math. 201A-Teaching of Mathematics \qquad -3
Graduate elective in major or $\begin{array}{r}- \\ -3 \\ \hline\end{array}$
minor
Graduate elective in Education
Minor or electives
\qquad 3
6

The required professional courses have been changed effective September Although the new courses are included in the above program a student part of the former requirement met may continue with the earlier set of sional courses.
See Teacher Education section of this Bulletin for further details.
DESCRIPTION OF COURSES
A. Fundamentals of Arithmetic. For students who need to strengthe knowledge of arithmetic computation and reasoning.

One unit; fall, spring
3. Slide Rule. Use of the slide rule in calculations involving multiplic division, powers, roots, logarithms, trigonometric functions, and in the so right and oblique triangles. Prerequisite: Trigonometry (may be taken rently).

One unit; fall, spring
4. Mathematics for Nurses. A review of the fundamental processes of ic as applied to problems in nursing, followed by practice in the use of the and apothecaries systems in the making of solutions and in computing dosa, Two units; fall
106. Mathematics in General Education. A course for nontechnical students, signed to show the importance of mathematics in general education by surveying foundations, growth, applications, and recreations of mathematics. The influence mathematics upon man's concept of the world around him will be stressed. mathematical prerequisite is required; any mathematical skills necessary will developed in the course

Two units; fall
108.* Theory of Numbers. Euclid's algorithm, study of prime numbers, gruences of first and higher degrees, theorems of Fermat, Euler, and Wilson, ratic residues. Prerequisite: Math. 31.

Two units; fall
115. Projective Geometry. An introductory course including primitive f ideal elements, incidence, duality, special figures, harmonic properties, perspectiy and projectivity, related forms, conics, cones, and reguli, specialization to m geometry. Prerequisite: Math. 31.

Three units; spring
Dieckma
116. College Geometry. A synthetic treatment of such subjects as similari harmonic arrays, inversion, poles and polars, cross-ratio, involution, and ruler compass constructions. Recommended for prospective teachers of high sc mathematics. Prerequisite: Math. 31.

Three units; fall
118. Non-Euclidean Geometry. Hyperbolic and elliptic plane geometry trigonometry, with emphasis on historical and logical development. Prerequ Math. 31.

Two units; fall
128. Theory of Equations. Complex numbers, determinants and matrices equalities, permutations-combinations, and probability, algebraic equations, and quartic equations, and numerical approximations to the roots of an equatio Thrusite. Ma .
Three units; fall, spring
129.* Statistics and Probability. Permutations, combinations, frequency f tions, games of chance; empirical and theoretical frequency distributions; mom as descriptive statistics of distributions; moment generating functions; relation omial, normal, and Poisson distributions; distribution 32 and 50 or sion of instructor.

Three units; spring
132. Introduction to Differential Equations. A transition course for st whose work in the elementary calculus did not include differential equations, signed to prepare for subsequent registration in Math. 133 or 134. Covers equa of first order and first degree, and linear equations.

Two units; fall
133. Engineering Mathematics. Continuation of Mathematics 32 for student engineering and science, followed by selected topics in elementary numerical sis including: accuracy in numerical calculations, dimensional analysis, curve fi least squares, alignment charts, graphical and numerical differentiation and inte tion, approximate solution of differential equations, harmonic analysis, stat methods in engineering. Prerequisite: Math. 32.

Three units; fall, spring
134. Advanced Calculus. Limits and continuity, Riemann integral, differee tion of integrals, line integrals, Green's theorem, gamma function, Fourier se and theory of ordinary differential equations. Prerequisite: Math. 32.

Three units; fall, spring
141. Partial Differential Equations. Partial differential equations of physics engineering, orthogonal functions, Fourier series, Legendre functions, Bessel tions, and boundary value problems. Prerequisite: Maths. 133 or 134.
Two units; spring
*. Given in alternate years
2. Vector Analysis. The algebra of vectors, the differentiation of vectors, the ential operators gradient, divergence, and curl, together with applications to metry and physics. Prerequisite: Math. 32.
Yo units; spring
Bird
14.) Numerical Analysis. Numerical solution of simultaneous linear equations, rices and determinants, finite differences, interpolation, numerical solution of methods, least squares of ordinary and partial differential equations, relaxaonal routines, machine approximations, nonlinear equations, design of compuPhree units; spring (offered in 1956-57)
-). units, spring (offered in 1956-57)
46.7. Advanced Analysis. Advanced topics in the subject of real variables. requisite: Math. 134.
Three units; spring (offered in 1956-57)
48.* Complex Variable. Conformal mapping, study of analytic functions, comintegration, residues, and power series. Prerequisite: Math. 134. o. units; spring
80. Special Study. Individual study in a specific field. Registration to be apby department head o units; on demand
393. Elementary School Mathematics. Development and meanings of numtopics of arithmetic from point of view of meanings, uses, and history. Orrequirement in of teaching basic skills and facts. Prerequisite: fulfillment wo units; fall spring
o units; fall, spring
Larsen, Marks, Purdy
394. Secondary School Mathematics. Basic course in teaching of secondary
matics. The place and function of mathematics in matics. The place and function of mathematics in secondary education, the condary mathematics. ondary mathematics.
0 units; fall, spring, summer
395. Curriculum and Instruction in Jamison
oblems in teaching mathematics, including courses of Mathematics. A study tt for instruction, evaluation of learning aids. Prerequisite: Educ. 393. onits; spring

Graduate Courses

1A. Teaching of Mathematics. Mathematics for the changing curriculum. Emstudy of subjects related to the lives mathematics for general education. Quanstudy of subjects related to the lives of all citizens. e units; fall
B. Teaching of Mathematics. Mathematics for Jamison hool program. Emphasis on the study of secondary int of higher mathematics. Selected topics secondary mathematics from the ons of mathematics useful to the secondary teather mathematics and apation.
units; spring
1A. Higher Geometry. Projections, special Jamison coordinates in the plane, linear dependence, cross-ratio and hogeneous Carline coordinates in the plane, duality, projective transform harmonic divithe plane, geometry of the complex plane, lations.
e units; fall
Dieckmann
D. Higher Geometry. Types of geometry, conics, point curves and line Cartesian coordinates in ane theory of conics, the circle, inversion, homogeans, line coordinates in space, plane coordinates, duality, surfaces, uns, line geometry. Prerequisite: Math. 211A.
units; spring
alternate years.

221A. Higher Algebra. A selection from the following: Postulational de ment of the integers. Construction of the rational numbers, the real number the complex numbers. Elementary theory of groups, rings, integral domains,

Three units; spring
221B. Higher Algebra. A selection from the following: Elementary th vector spaces and matrices; set theory; boolean algebra; transfinite algebraic number theory. Prerequisite: Math. 221A

Three units; on demand
231A. Higher Analysis. Dedekind cuts and the real number system. T Borel theorem. Continuous functions of a real variable. Definition of the Ri integral. Conditions for its existence. Some properties of the integral. Un convergence.
Three units; on demand
231B. Higher Analysis. The complex number system. Analytic functions chy-Riemann equations. The Cauchy integral theorem. Taylor series. Laurent Prerequisite: Math. 231A.
Three units; on demand
241A. Advanced Numerical Analysis. A continuation of Mathematics 14 particular attention to preparation of problems for machine computation.
Three units; on demand
251A. Machine Computation. A study of machine calculation including sideration of desk, relay, and electronic devices.
Three units; on demand
298. Special Study. Advanced individual research and projects. Maximum
of four units.

One to four units; fall, spring
299. Thesis.

Two units; fall, spring

