

Under the fair use provisions of the copyright law of the United States (17 USC 107), wis single copy was produced for reference use only from material in Manuscripts and Archives, Yale University Library, P.O. Box 208240, 128 W/all Street, New Haven CT 06520-8240. Unless permission is granted, neither this copy nor the words on it may be: reproduced in any form; used by an unauthorized person; or placed in the collections of any institution or individual.
gram must be approved by his dean and adviser, and every reaso program will be approved. A student whose program departs markee Dean and faculty program adviser that it will still achieve for the student its own way the goals of a liberal education.

MAJOR PROGRAMS

Students seeking the B.S. or the B.A. degree with a major in science expected to elect their majors at the beginning of Sophomore year, althoug a major in science may still be elected later if the student has completed courses required to enter it. Sophomores interested in majoring in scient should have their schedules approved by the Director of Undergraduㅊ. Studies or adviser designated by the department in which they wish major. Students seeking the B.A. degree with a major in a field other that science are expected to elect their major at the beginning of Junior ye The schedules for Sophomore year of these students must be signed b Sophomore adviser, chosen by the student, with whom the program been discussed.
All candidates for a bachelor's degree in Yale College must elect one the major programs listed on page 28. The requirements for a major described in general terms in the sections below, and in more detail at beginning of the course descriptions of each department or program Chapter III. In every case students plan their schedule of courses in the major subjects or fields in consultation with a representative of the depar ment or program concerned, and must secure the consultant's writte approval. Students should acquaint themselves fully with all the requiri ments of the major they plan to enter, considering not only the immediat choice of courses but also the plan of their entire work in the last twor three years in college.

SELECTION OF A MAJOR

In designing a program of study, the student ought to plan for depth? concentration as well as breadth of scope. To study a subject in depth é be one of the most rewarding and liberating experiences a person can secil and can form the basis of the interests and occupations of a lifetime Although no one should specialize to the neglect of distribution, know edge advances by specialization, and one can gain some of the excitemere of discovery by pressing toward the outer limits of human knowledge in particular field. Intense study of a seemingly narrow area of investigatio will often disclose ramifications and connections that alter perspectives every other subject. Such study also sharpens a person's judgment an acquaints him with processes by which new truths can be found.
In order to expose themselves to this kind of experience, students mil choose a field of study that will be their major field, that is, the subjectivid which they will work more intensively than they do in any other. A list possible majors in Yale College from which such a choice is to be made given below on page 28 . Specific requirements for each major are establishe by the department or program concerned and are explained in Chartes III.

Some students will have made a tentative choice of a major befo entering college. Others will have settled on a general area--for examp
W. Wences or the humanities-without being certain of the partic4ndeat or program they intend to major in. Still others will be Whatecided. Past experience shows that students who arrive with 48w whade up often change them after a year or two. Even students * Whatain of their choices should keep open the possibility of a whe electing courses during the first two years, students should have 4. W Whe only the application of the Guidelines described above, but Whed for a preliminary exploration of the subjects to which they $0,4 x$, in order to become aware of their own tastes, talents, and

W. Wayase of the Guidelines, the student should make the final choices W. \& program, but once again, a few general principles may help 2xind conrses.

* Wh the humanities and social sciences, there is some progression 4whery to advanced courses. It is possible to begin a major in, for . Winglish, psychology, or history at the end of the Sophomore year - custere are few prerequisites, and students may satisfy them in either Wi.v. iven or Sophomore year, or even, in some cases, on the basis of Han secondary school.

820. Whate other fields of study, such as the natural sciences and such * W. Whoreign languages and literatures, a sequence of courses must be 4.4.t.tyonological order from the Freshman to the Senior year. In orde , Whene of these fields, the student must lay the groundwork in the What Wrar. If the initial courses are missed in the Freshman year, it may 4x wo begin a major in these subjects in the Sophomore year. The 2 * Whanses are prerequisites for the Sophomore courses, and so on. W Wher, therefore, to attain the maximum range and freedom of 2. 2. Sxithe upperclass years, each student should think seriously about
 . 8 Wof the Freshman year a course in mathematics and probably two Whe natural sciences, one of these preferably in chemistry.
4 Whatter what major a student selects, the knowledge of a foreign Whequired in the Distributional Requirements for the Bachelor's vomnd to be useful in his studies. Students who cannot comfort2* * dercign language would be well advised to take during Freshman Whware year courses that will enable them to do so. Anyone who \% se exteraduate study should keep in mind that the requirements for 2. Wharee usually include a reading knowledge of two foreign lanWhmonly French, German, or Russian.
2.3. Withe courses open to Freshmen will continue work they began (2xate school. Students will probably want to choose some of their :. . - wew ourses in areas in which they have already acquired some famil24 Winterest, but for the sake of intellectual stimulation and to avoid Whe limited in their range of future choices, they should also elect $24 x$ in in fields that are wholly new to them.

THE MAJOR (B.A. OR B.S.)

 60. 2 Wually includes twelve term courses taken for the most part in 54 Senior years. Majors are offered by departments or by interde4iver interdisciplinary programs. In many departments and pro-
\star Comparative Literature $316 \mathrm{a} / \star$ English 184 a (26416), Renaissance Limite Poetry. Thomas Greene.

$$
\text { MW 2.30-3.45 Not CR/F } \quad \mathrm{I}(\mathrm{O})
$$

 and Donne, with special attention to the relationship between languyw and selfhood, as well as the relationship between inherited traditions and $\$$ ity. Prevequisite: reading knowledge of French.
*Comparative Literature 355b/*English 302b (26453), Joyce and Manṇ James Snead.
MW 1.30-2.45 Notcr/f
A comparison of the major works of Joyce and Mann in light b we. implications for the development of the twentieth-century novel, with, x emphasis on Ulysses and The Magic Mountain. Alternate reading of wort. two writers with focus on the transformation of mythic and phiterst. sources; medievalism; typical rhetorical figures and modes; anti-trad sources; medievalism; typical rhetorical figures and modes; anti-tradireerese.
critical reception. Reading knowledge of German required for Comparotty critical reception. Reading knowledge of German required for Compar ture majors, recommended for others. 'Texts available in translation
-Comparatipe Literature 366b (26466), Eighteenth- And Nineteentit Century Narrative Fiction. Claudia Brodsky.
Trh 1.30-2.45 Not CR/F I(0)
Close readings of English, German, French, and American narratixy Analysis of the relation between the discursive and representational dirnows of fiction in forms ranging from early epistolary and journal novels, shest first-person narratives, to authorial narrations and narrative realism, Ine: works by Richardson, Diderot, Goethe, Goldsmith, Laclos, Kleist, Austen, Melville, Balzac, and Dickens. Reading knowledge of French ryx Comparative Literature majors, recommended for others.
\star Comparative Literature 368b (26468), Short Prose of the Twentibit Century. Howard Stern MW 3.30-4.45 I(o)
An investigation of an area delimited by several genres, including tax poem, feuilleton, philosophical aphorism, and essay, with emphasis onf ical issues of poetics, interpretation, and translation. Works by Kafka, Bez Ponge, Calvino, and others. Reading knowledge of Erench, German, o required for Comparative Literature majors, recommended for others.
\star Comparative Literature 488a or b (26488), Directed Reading and/or: Individual Research. David Marshall and staff
Hours to be arranged with adviser Not CR/F I(0)
Special projects set up by the student in an area of his own particularistris. with the help of a faculty adviser and the Director of Undergraduate. intended to enable the student to cover material not otherwise offered intended to enable the student to cover material not otherwise offered
department. The project must terminate with at least a term paper or itse lent, and must have the approval of the Director of Undergraduate $\&$ Enrollment limited to Comparative Literature majors.
\star Comparative Literature 489 (26489), The Senior Colloquium.
Jennifer Wicke and staff.
т 8-IO P.M.; disc. Th I HTBA \quad Not CR/F I(o)
For description see Literature 489a. For Senior Comparative Literaturis oniy.

Whot cR/F I(0)

wrative Literature 49Ia or b (26491), SENIOR ESSAY
Whydependent writing and research project required of all Comparative 4vinre majors. A prospectus signed by the student's adviser must be submit-Whe the office of the Director of Undergraduate Studies by the end of the . 4 week of the term in which the essay is to be written. A rough draft mustm Whennitted to the adviser and to the Director of Undergraduate Studics - Weximately one month before the final draft is due. Essays are normally 25 tog Whamately

HENRY LUCE COURSE, 1984-85

*- Luce Seminar $184 \mathrm{a} / \star$ History $_{390 \mathrm{a}}$ (65202), The Origins of the ywifches' Sabbat. Carlo Ginzburg.
64 Wh I.30-3.20 II (o)
Whamination of the emergence of the notion of witches' sabbat in late Whamination of the emergence of the notion of witches sabbat in lateg What Europe. Focus on learned stereotypes (lay and clerical) as well as one 24uty Sprenger and Institor, de Lancre, and others), Inquisitorial trials; whenth- and twentieth-century literature on folklore, history of religions, * Wiowiledge of Latin, French, German, or Italian recommended but not Whumed.
8x kig further information about the Henry Luce Course, see Chapter I. 36 Whinliment limited to 30 . Students wishing to enroll must register for the Whis in Room m2, Whitney Humanities Center, 53 Wall Street, on September ",

MATHEMATICS

(See also APPLIED MATHEMATICS)

4 Whaboe (Chairman)

- mand Coifma
\% F Feit
64 Kard Garland
Sistrinow
4 48ine Lee

5. W. Mrs Maciñyre

4, Whar Moncrief

*) 4 course offerings and the major in Mathematics reflect the many roles Whe whematics itself: as the language and tool of the sciences, as a cultural - ommenon with a rich historical tradition, and as a model of abstract woning. The Mathematics major provides a broad education in various Wef mathematics in a program flexible enough to accommodate many

6, F and B.S. degree programs. The B.A. degree program normally consists Whaterm courses in Mathematics numbered $222 a$ or b or higher. Each mate is expected to take either Mathematics 230 or its equivalent: Math-

George Mostow	W. Gibrs In
Ilya Piatetski-Shapiro	Guy David
David Pollard	Douglas Pickrell
George Seligman	Philip Scowcroft
Robert Szczarba	Allen Shepard
Tsuneo Tamagawa	Alexander Suciu
Gregg Zuckerman	Simon Thomas
	Paul Vojta
Assistant Professors Nathan Habegger Neil Immerman Rudolf Schmid	
	Lecturer
	Erank Ryan
and the major in Mathematics reflect the many roles as the language and tool of the sciences, as a cultural rich historical tradition, and as a model of abstract ematics major provides a broad education in various in a program flexible enough to accommodate many	
programs. The B.A. Mathematics num take either Mathem	gram normally con 2 a or b or higher. or its equivalent:

ematics 222 a or b and 250 a ．He is also expected to take at least two courses in each of three of the following categories：analysis（2soi courses between 300 and 349）；statistics and applied mathematics（ 8 between 241 and 260 ，except 250a）；algebra and number theory（2223） courses between 350 and 399）；geometry and topology（courses be： 400 and 449）；logic and foundations（courses between 450 and 46 270a）．All Mathematics majors are urged to take at least one of Computer Science 22aa or b or 440a，which may be counted as a term a in applicd mathematics．In some instances permission may be grantio take additional required term courses in other departments（e．．．，Conit Science，Engineering and Applied Science，History of Science，Histect Medicine，Philosophy，Physics，Statistics）．
A candidate for the B．S．degree must take，in addition to the teit courses required for the major in Mathematics，at least two advanced courses in the physical sciences，to be chosen with the approval Director of Undergraduate Studies．
Any student interested in mathematical research as a career is urge take Mathematics 230，30ra，305b，3i0a，350a，and 370b．A sample progrt mathematics for such a student might consist of these courses plus t from Mathematics $430 \mathrm{~b}, 435 \mathrm{~b}$ ，270a，and 450 Ob ．Students with more in in teaching mathematics or in applications of mathematics should sexid． consider Mathematics 222aa or band 250a．A program for such a stris might consist of Mathematics 222a or b，244a，242b，246a or b，250a 310a， 350 a ，and 270 or 45 ob ．
The intensive major：Candidates for a degree with an intensive n Mathematics are expected to include at least two terms of graduate 0 work，or of cquivalent independent study，in their programs．Famil with the material of the following courses should be considered preeee to graduate courses in the respective categories：Algetra：two courses range 350－399．Analyris：Mathematics 230，246a or b，30xa，305b，3100 ometry and Topology：Mathematics 250a，350a．Logic and Foundationss M ematics 270a，450b，456b．

Senior requirement．A student majoring in Mathematics is required dit the Senior year to give an oral presentation on some topic selcerod members of the faculty．In $1984-85$ ，the department expects to provieb an experimental basis，two or three mini－seminars which will cover tit not available in regular courses．Seniors may opt to take such a semitit their Senior requirement instead of giving an oral presentation．Ford students should consult the Director of Undergradnate Studies at the of fall term．

The following members of the department may be consulted by sturit through their Residential College affiliation：

BK，R．Schmid	MC，G．Seligman
BR，R．Lee	PC，G．Mostow
CC，N．Immerman	SY，R．Szczarba
DC，R．Howe	SM，R．Beals
TD，R．Coifman	ES，W．Feit
JE，T．Tamagawa	TC，W．Feit

THE MASTER＇S DEGREE PROGRAM
Students who，by the end of their Senior year，complete the requires of the department for the M．A．in Mathematics will be eligible to so this degree at their Senior Commencement．Required are：（I）eight
nuumbered 500 or higher，most of which must be completed with of High Pass or better；＇（2）a reading knowledge of mathematical St in a foreign language of importance for mathematical research Fily French，German，or Russian）；（3）satisfactory performance on a ioral examination．
Master＇s program is in no sense a substitute for the B．A．or B．S．program； it is designed to accommodate a very few exceptional students who， ins of accelerated or independent study，can satisfy the department as 4 command of the content of the normal undergraduate program． hates must submit to the Director of Undergraduate Studies，during term of Sophomore year，a proposal which foresees this level of ment by the end of Junior year．Their status and progress will be od before they are permitted to continue in the program in Senior
cast two terms of graduate work are to be taken in the Junior year Tilly courses in algebra or analysis will be the first graduate courses 4The general oral examination covers a list of topics available from eector of Graduate Studies，and will be accepted in lieu of the usual Foral presentation．Details concerning the requirements for the mas－ soree may be obtained from the Director of Graduate Studies．

MENT IN COURSES

酮ied Freshmen and Sophomores may，with the permission of the in－ 4 take any of the courses numbered $222 a$ or b or above．
fimen taking calculus are normally placed in Mathematics ina，in2a， 5月，or 120a，according to their backgrounds and，in particular，to their Tin C．E．E．B．Achievement or Advanced Placement Tests．It is expected ori absolutely required）that any Freshman applying for placement in ranced course（i．e．，rusa or higher）will have taken the Advanced thent Test．All placement is subject to appeal and review during the ic are three basic calculus sequences，namely ma－144b，in2a－nisb，and mb．Each sequence consists of a semester of differential calculus ed by a semester of integral calculus．The main differences are in sis．Mathematics nira－114b is intended for students with weaker Grion，and the presentation will be paced to allow consolidation of sic techniques from algebra，analytic geometry，and trigonometry． matics n2a－insb will presuppose these techniques，and will be most riate for well－prepared students who need calculus for applications． Ratics $116 a-117 b$ is intended for students with a strong preparation Vong interest in mathematics，including the theoretical basis of the 4s；theory，understanding，and problem solving will be stressed．
ai Mathematics in4b or insb a student would naturally continue to Gb or 222a or b．Mathematics 116a－117b will prepare a student for 230， bepa or b and 250a．
Inaterial covered in Mathematics 230 is approximately that covered for b ， $222 a$ or b ，and 25oa．However，Mathennatics 230 emphasizes natical rigor，while students taking Mathematics i20ä or b combined iza or b and Mathematics 2 soa will spend more time on applications． trs who take Mathematics 230 should have a strong interest in abstract natics．

REQUIREMENTS OF THE MAJOR

Prerequisite：None
Number of Courses：B．A．Degree－io term courses；B．S．Degree－ iz tex Distribution of Courses：B．A．Degree－2 courses in 3 categories chio among（a）analysis，（b）statistics and applied math，（c）algebra and numbe （d）geometry and topology，（e）logic and foundations，with course raif （d）geometry and topology，（e）logic and foundations，with course ray
above；B．S．Degree－same，and 2 advanced－level courses in the physicid with approval of DUS
Specific Courses Required：Math 230 or the combination of Math 222 ？ 250a
Substitution Permitted：CompSci 22xa or b or 440a；or courses in othe depts，with permission of DUS
Senior Requirement：Oral presentation on topic selected by the faculty seminar
Intensive Major： 2 courses on graduate level counted among the requirect
\star Mathematics E．C．（6ssoo），Mathematical Analysis．Nathan Habeg 3 HTBA TC Not CR／F IV（so）
An introduction of some of the fundamental ideas of modern matit for a small group of Freshmen interested in the serious study of matif The seminar is built around Mathematics 230，Vector Calculus ande Algebra，which must be taken concurrently．The Early Concentration wis expand the topics covered in Mathematics 230 －the algebra of finite ding x st vector spaces and the usual notions of calculus extended to functions，䄈， these spaces－and apply them in other areas of mathematics．Possible atd k areas include metric spaces，topological spaces，Hilbert spaces，Fourie： and differential equations．Candidates for enrollment should have； preparation in mathematics，particularly in calculus，as shown by a scoits preparation in mathematics，particularly in calculus，as shown by a sce
the BC Advanced Placement Test in Mathematics or by other co indications．Counts toward the major．

NTRODUCTORY COURSES

These courses do not count toward the requirements of a Mathematics．

Mathematios rua or b，Calculus I．Robert Szczarba［F］，Asger Aabos and staff．

3 HTBA For sections see the Fall or Winter Supplement
Fundamentals of calculus of functions of one variable，with discous？ elementary functions and analytic geomerry as needed．No prior acepres with calculus is assumed．This course is suitable for students with meid calculus background．Not open to students who baive completed Mathemout

Mathematics hiza，Calculus of Functions of One Variable I． Serge Lang and staff．

3 HTBA For sections see the Fall Supplement．IV（69）
Limits，continuity．Differentiation of elementary and transcenderte tions，and applications．No prior acquaintance with calculus is assuin open to students who bave completed Mathematics no．＊
＊Last offered in 1983－84．
114b，Calculus II．Robert Szczarba and staff
Firiba For sections see the Winter Supplement IV（69）
satinuation of Mathematics ma．Change of variable in integrals，integra－ parts，polar coordinates，computation of areas and volumes．Rudiments iens of several variables，with applications．After Mathematics infa or in2a．
watics inga or b，Calculus of Functions of One V．arlable II．翟ard Garland［F］，Serge Lang［Sp］，and staff．
前tBa For sections see the Fall or Winter Supplement IV（69）
gntinuation of Mathematics ima．The definite integral and the fundamen－
fiem of calculus．Techniques of integration．Polar coordinates．Taylor \＃hysical and geometrical applications．After Mathematics no＊or ina，or salent；open to Freshmen with some preparation in calculus．One section that eater emphasis to applications is taught by a member of the Engineering
sectics in6a（65s5s），Calculus I：Theory and Applications．
Tholf Schmid．
IWF 10．30－1I．20 IV（33）
content and prerequisites of n6a are similar to those of 112a，but the wation is geared to students with a strong interest in abstract mathematics． it to students who bave completed ina or b ，or m 2 a ．

6utatics ii7b（65556），Calculus II：Theory and Applications．
tolf Schmid．
SWF 10．30－11． 20
IV(33)
sontinuation of Mathematics in6a．The content is similar to that of Math virsb differing only in terms of presentation，which emphasizes abstrac ivell as applications．After Mathematics mia，112a，or 116a．Not open to sioho have completed Mathematics in4b or usb．
gatics izoa or b，Calculus of Functions of Several Variables．密ie Lee［F］，Ronald Coifman［Sp］，and staff．
Wriba For sections see the Fall or Winter Supplement IV（69） Thytic geometry in three dimensions，using vectors．Real－valued functions Whd three variables，gradient and directional derivative，level curves and 7 maxima and minima．Parametrized curves in space，motion in space trgrals；applications：Multiple integrals，with applications．After Mathe－ fisa or b or by permission．Two sections that give greater emphasis to ons are taught by members of the Engineering faculty in the fall term， ie spring．

CEDIATE AND ADVANCED COURSES

courses count toward the requirements of a major in Mathematics．
ratics 222a，Linear Algebra and Matrix Thbory．
Sect A（65678）MWF 10．30－II． 20 Douglas Pickrell IV（68）
Disc．I HTBA
ect B（ 65679 ）TTh 9－1o．is George Mostow IV（68）
Disc．I htBA
Introduction to the applications of vector spaces in algebra，analysis，and y．Matrix algebra，determinants，eigenvalues，quadratic forms，principal linear programming．
ffered in 1983－84．

Mathematics 222b, Linkar Aygbbra and Matrix Thbory
Lect A (65681) MWF 8.30-9.20 Peter Schultheiss IV(68) Disc. I hTBA
Lect B (65682) MWF 9.30-10.20 Staff IV(68) Disc. I HTBA
Lect C (65683) Trh 9-ro.15 George Veronis. IV(68) Disc. I htBa
Students must enroll in a discussion section assigned to their lectur
The content of this course is identical to that of Mathematics 2222 . A emphasizes applications and is taught by a member of the Enginecrix.
\star Mathematics 230 (65693), Vectọr Calculus and Linear Algebra Walter Feit.

Lect MWF II.30-I2.20 IV(34)
Rec. 1 HTBA
A careful study of the calculus of functions of several variables, with linear algebra.

Mathematics 241a/Statistics 24Ia (9724I), Probability Theory.
John Hartigan.
MWF 9.30-io. $20 \operatorname{IV}(32)$
For description see under Statistics.
Mathematics 242b/Statistics 242b (97242), Theory of Statistics.
I. Richard Savage.

MWF 9.30-10.20 IV (32)
For description see under Statistics.
Mathematice 246a or b (657I2), Ordinary DIfferential EQuation
Roger Howe [F], Frank Ryan [Sp].
TTh 9-IO.15 IV(2I)

Numerical solution methods. Geometric and algebraic properties. ential equations. First-order equations, second-order equations, linear with constant coefficients. After Mathematics 120a or b or the equivalent,

Mathematics 250a (65716), VEcTOR Analysis. William Massey. MWF II.30-12.20 IV(34)
Calculus of functions of several variables, using vector and matrix the Implicit and inverse mappings. Transformation of coordinates. Theors Green, Gauss, and Stokes. Potential theory, with physical and geore applications. After Mathematics 120a, 222b, or the equivalents.

Mathematics 260 b (65726), Analyrical Methods. Ronnie Lee. MWF 10.30-II. 20 IV (33)
A unified treatment of several advanced methods of applied mathe the calculus of variations, partial differential equations, and Sturms eigenvalue problems. After Mathematics 120a, 222b, 246a, or the equivalent

Mathematic 270a (65736), Set Theory. Simon Thomas. MWF 10.30-11. 20 IV(33)
Algebra of sets; finite, countable, and uncountable sets. Cardinalis and cardinal arithmetic. Order types and ordinal numbers. The axiom 8 and the well-ordering theorem. After Mathemation 120 ar or or the equipa.
\star Mathematics 301 a (65767), Introduction to Anaiysis. Richard Beale TTh I-2.15 Not Cr/F. IV(26)
san introduction to the theory of functions of real variables, including sits of set theory, metric spaces, and point set topology. After Mathematic the equivalent
ematics 305 b (65771), Real Analysis. Richard Beals.
TTh I-2.IS Not CR/F IV(26)
pics from the theory of functions of real variables, with emphasis on y of integration and applications to Fourier analysis. After Mathematics by permission.

Hematics 3ioa (65776), Introduction to Complex Analysis.

Fregg Zuckerman.
MWF $10.30-11.20$ IV(33)
狸 introduction to the theory and applications of functions of a complex
Whe. Differentiability of complex functions. Complex integration and

ping. After Mathernatics 230 or 250a or the equivalent.
samatics 3I5b/5isb (65781), INTERMEDLATE COMPLEX ANALYSIS
tregg Zuckerman.
MWF 10.30-II. 20 IV(33)
Continuation of Mathematics zıo. Topics include argument principle
whe's theorem, Hurwitz theorem, Runge's theorem, analytic continuation,
Warz reflection principle, Jensen's formula, infinite products, Weierstrass y hem. Functions of finite order, Hadamard's theorem, meromorphic func-
x. Mittag-Leffler's theorem, subharmonic functions. After Mathematics 310a

Thmatics 320a/s20a (65786), Measure Theory and Integration.
Stephen Semmes.
TTh I-2.15 IV (26)
Wonstruction and limit theorems for measures and integrals on general es; product measures; L.P spaces; integral representation of linear functionnalytic sets. After Mathematics zora or the equipalent.
ficmatics 325b/s25b (65791), Introduction to Functional Analysis.
Siny David.
TTh II.30-12.45 IV(24)
Wilbert, normed, and Banach spaces; geometry of Hilbert space, Riesz-
Whisher theorem; dual space; Hahn-Banach theorem; Riesz representation theolinear operators; Baire category theorem; uniform boundedness, open ing, and closed graph theorems. After Mathematies 320a.
damatics 350 a (65816), An Introduction to Abstract Algerra
suneo Tamagawa
MWF I.30-2.20 IV (36)
Group theory. Rings, with emphasis on integral domains and polynomial s; modules over Euclidean domains; applications to linear algebra. After tematics 222a or b or the equivalent.
ifematics 353b/6s3b (658i9), Representations of Finite Groups.
4ya Piatetski-Shapiro
\therefore MWF 1.30-2.20 IV (36)
Sasic theory of representătions and characters of finite groups: orthogonality gins, induced representations, exceptional characters, Brauer's theorem. lications to the structure of finite groups. Theorems of Burnside and Fros. After Mathematics 350 a .

Tale College Programis of Study 1984-85

[Mathematics 354b, Number Theory. 1985-86]
\star Mathematics 370 b (65836), Frblds and Galois Thbory. Paul Vojta. MWF 1.30-2.20 IV (36)
The theory of fields and Galois theory, including finite fields, solvatw equations by radicals, and the fundamental theorem of algebra. Aftert matics 350 a .
\star Mathematics 400 (65866), Introduction to Mathematical
Mechanics. Vincent Moncrief.
TTh I-2.15 IV(26)
Newton's equations and the Galilean group; the Euler-Lagrange eq, and Noether's theorem; the Kepler problem and rigid body motion; syis manifolds and Hamiltonian mechanics.
[Mathematics 430b, An Introduction to Algebraic Topology. is
\star Mathematics 435b (6590I), Differential Gbometry. George Mostot TTh9-IO.Is IV(2I)
Applications of calculus to the study of the geometry of curves and si in Euclidean space, intrinsic differential geometric properties of manifol. connections with non-Euclidean geometries and topology. After Math 230 or 250 or the equivalent.

Mathematics 450 b (65916), Intrọduction to Mathematical Logic. Simon Thomas

TTh 9-10.15 IV(2I)
The propositional calculus, deduction, and semantic interpretation lower predicate calculus, completeness, axiomatic set theory, problems foundations of mathematics.
[Mathematics 456b/9ssb, Recursive Function Theory. 1985-86]
*Mathematics 460a (65926), Philosophical Foundations of
Mathematics. Philip Scowcroft.
2 HTBA Not CR/F IV(0)
Various philosophical positions with respect to the foundations of ? matics, including realism, constructivism, and finitism.

Mathematics 470a or b (65936), Individual Studies. Consult the Diree of Undergraduate Studies.

Meets RP IV (o)
Individual investigation of an area of mathematics outside of those in regular courses, involving directed reading, discussion, and either p an examination. A written plan of study approved by the students adv the Director of Undergraduate Studies is required. The course may norm elected for only one term.

COURSES IN OTHER DEPARTMENTS THAT ARE PARTICULARLY RELEVANT TO THE MAJOR

The following courses may, with the permission of the Diredo Undergraduate Studies, be counted with Mathematics courses towat requirements of the major.
(4) Science 22Ia or b (27347), Introduction to Computer Science.

1 Perlis.

description see under Computer Science.
ent Sciences 235 a (65235), Linbar Programming and Extensions.
Denardo.
Fin 2.30-3.45 Not CR/F IV(27)
description see Management Sciences under Organization and Manage- Chan.
yy Chan.
NWF 1.30-2.20 Not CR/F IV (36)
description see under Computer Science.
4ictr Science 44Ib/541b (27567), Numerical Computation II. Ham Gropp.
WF 1.30-2.20 Not cR/F IV(36)
adescription see under Computer Science.

绳

UATE COURSES OF INTEREST
fir year the departments of Mathematics and Statistics offer a large We of graduate courses, some of which are accessible to advanced We yraduates. Further information may be obtained from the respective
Viors of Undergraduate Studies whose permission, together with that Frelevant Director of Graduate Studies, is required for admission. ig the most basic graduate courses are:

8zatics 544a, Algebraic Topology.
is 600a, Advanced Probability.

MATHEMATICS AND PHILOSOPHY

apajor allows students to explore those areas where philosophy and Thatics meet, in particular, mathematical and philosophical logic and tilosophy of mathematics.
©prerequisites for the major are Mathematics i20a or b and Philosophy A total of twelve term courses in mathematics and philosophy is ied. At least five of these should be in mathematics and at least five in sophy. Required courses include Set Theory (Mathematics 270a), and duction to Mathematical Logic (Mathematics 450b), both of which We taken before the end of the Jufíior year, although they should fly be taken before that year. They also include:
tither of the following:
6) Logical Theory II (Philosophy 440b),
5) Recursive Function Theory (Mathematics 4.56);

Fin advanced philosophy course (other than Philosophy 204a or 44ob) virh a substantive logical component;
（3）one of the seminars designated as fulfilling the Senior requit （see below）．
Requirements（1），（2），and（3）must be satisfied separately；how student may satisfy（2）and（3）by taking two designated seminars， p in at least one of them is in Philosophy．

Senior requirement．Each year certain seminars offered by the Mathe and Philosophy departments are designated as fulfilling the Senior ret ment of this major．Subjects covered in these seminars vary from year．A student who selects one of them to satisfy requirement（3）aboy be expected to give a presentation within the seminar on a topic seleg； consultation with the instructor．These seminars may be taken at apy after a student has completed Mathematics 270a and Philosophy 2042

The seminars fulfilling the Senior requirement for 1984－85 àre Philo 449a，Probability，Induction，and Decision Theory；Philosophy 452b． metry and Physical Law；and Mathematics 460a，Philosophical Found of Mathematics．

A typical program satisfying the major might consist of：
Mathematics i20a or b，222a or b，270a，350a，450b，and desisi seminar；
Philosophy noa，204a，222a，440b，and designated seminars presentation．
Majors should consult Walter Feit and Ruth Marcus or R．I．G．Hug

REQUIREMENTS OF THE MAJOR

Prerequisites：Math izoa or b，Phil 204a
Number of Courses： 12 term courses（within which total the prerequisites Senior seminar are included）
Distribution of Courses：At least 5 in each subject
Specific Courses Required：Math $270 \mathrm{a}, 450 \mathrm{~b}$ ，and Math 456b or Phil 440 b
advanced Phil course with substantive logical component
Senior Requirement：Senior seminar

MATHEMATICS AND PHYSICS

A minimum of fourteen term courses in mathematics and physics aboxy Sophomore level is required，with at least six in each of the two subjaid Senior essay on a topic appropriate for the combined major and accepe to both the Physics and the Mathematics departments is also required student must present an oral report on this essay to the Mathens： department．Majors should consult Walter Feit and Edward Hinds．

Prerequisites：Math 120 a or b ；Phys 150a，151b，or 180a，181b，or 200a，201b or 250a，25Ib；and Phys $165 \mathrm{La}, 166 \mathrm{Lb}$ ，or $205 \mathrm{La}, 206 \mathrm{Lb}$
Number of Courses： 14 term courses above Sophomore level（within whind the prerequisites and Senior essay are not included）
Distribution of Courses：At least 6 in each subject，Math at level 222 or Phys at level 300 or above
Specific Courses Required：None
Senior Requirement：Senior essay on topic acceptable to Physics and Matheet depts；oral report on essay to Mathematics dept

MECHANICAL ENGINEERING

of Undergraduate Studies：Aris Phillips，zoi becton．
OF THE DEPARTMENT OF MECHANICAL ENGINEERING
 fopel（Chairman）福Chu Sis Onat Witips

4ical engineering is among the most diversified of the traditional ring disciplines．The mechanical engineer builds machines to extend尊ysical and mental capabilities and to convert traditional and novel sources into useful forms for man and his works．
siechanical engineer should bring to this enterprise a clear under－ sof the fundamentals of mechanics and the thermal energy sciences． Wing these principles，the modern mechanical engineer must also be等 to choose the best materials for a given application，be comfort－ Kamputer terminal making calculations and performing interactive童asks，and be sufficiently familiar with the chemical and electrical 5 which are often relevant to the total design and realization of a These systems typically include thermal，wind，and hydroelectric Whants；internal and external combustion engines；aircraft，hover－䲞d satellites；heating，air－conditioning，and refrigeration systems； Hraulic，magneto－hydrodynamical，and electromechanical equipment TIng robots）．The mechanical engineer has also played an increasingly ant role in the design of instrumentation，prosthetic devices，and bio－雄s for medical applications．
䚡 these tasks，the utmost consideration of the modern mechanical䇣 is the improvement of the quality of human life．He must be Why aware both of the finiteness of the earth＇s resources and of the What his works place on the earth and its ecosystem．
program in mechanical engineering is designed to provide a broad on in the foundations of the disciplines mentioned above，and to sstudents both for graduate studies in these areas and for entry into riate positions in research laboratories，industry，or government， ossibilities for careers in engineering，medicine，law，or business．At ree types of programs leading to a B．S．or B．A．degree may be taken legree program with a major in Engineering Mechanics，or a B．S Program with a major in Engineering Sciences（Mechanical），or a gree program with a major in Engineering Sciences（Mechanical） five B．S．majors in both programs are advised to complete introduc gics and mathematics through calculus（Mathematics insa or b）by of their first year
cular note should be made of the optional course，Mechanical Engi－ I8sb，which provides an opportunity for Freshmen to learn about chanical Engineering program through case studies and a term project．A students undergraduate engineering program usually ${ }^{3} t e s$ with one or more Special Project courses（Mechanical Engineer－
 oriented projects and experimental investigations．Projects may be a by the student himself，may be performed in a team，or may be

Associate Professors
Mahadevan Krishnan
Akhilcsh Macwal
Akhilcsh Macwal
Katepalli Sreenivasan
ssistant Professors Juan Fernandez de la Mora Marshall Long

Ezra Stiles, and Trumbull. At the head of each college is a resident master. In each college a dean advises students on both academic and non-academic matters. Associated with the master and the dean as fellows are about fifty members of the faculty drawn from different departments and schools of the University, a few of whom reside in the college and others of whom have offices there.

Upon entrance, each Freshman is assigned to one of the twelve residential colleges. During their first year, all Freshmen are required to live on campus. Except for those Freshmen affiliated with Timothy Dwight or Silliman Colleges, Freshmen live in a quadrangle at the center of the University known as the Old Campus; those living on Old Campus may take a limited number of meals in their college, and they participate fully in its life. After Freshman year most students live on campus in their colleges, with about ten percent of upperclassmen choosing to live off campus. Whether they live on campus or off, undergraduates normally continue as members of the same college throughout their undergraduate careers.

THE UNDERGRADUATE CURRICULUM

One of the distinguishing features of a liberal education is that is has no single definition. Yale consequently does not prescribe any specific course to be taken by a student, but instead urges each undergraduate to design a program of study suited to his own particular needs and interests from the multitude of courses available to college students in a university.
It is also true of a liberal education that it is neither too narrowly focused nor too diffuse. As a matter of educational policy, Yale College has always stood behind the principle of distribution in studies as strongly as it has supported the principle of concentration. Thus Yale requires that each student choose in the later years of college an area of concentration in one of the major programs or departments, while also expecting that the student's course of study be characterized, particularly in the earlier years, by a reasonable diversity of subject matter and approach. The faculty of Yale College has therefore formally declared its support of the principles embodied in the Distributional Guidelines (see Guidelines for the Distributton of Studies below). In addition, all undergraduates must fulfill the Distributional Requirements, which constitute the only specific rules limiting the selection of courses outside a student's major program.

DISTRIBUTIONAL REQUIREMENTS

Distributional Requirements for the Freshman Year and for the First Two

 Years. One of the chief objectives of these Distributional Requirements is to assure that in the first two years of their undergraduate education students elect courses from a variety of departments and in this way become exposed to different ideas and various ways of thinking. Many students come to Yale with advanced preparation in one or more fields. Early in their college careers, such qualified students ought to take advantage of any head start they may have in a subject to pursue it at a higher level than would otherwise be possible; a college course in a familiar subject at a more advanced level often discloses unfamiliar aspects of the subject. In addition, in disciplines like mathematics and languages, where the maintenance and improvementof skills greatly depend on con lightly to consider interrupting! first years of college. During explore some subjects that they of Sophomore year students ar of the department or program in do so. In choosing Freshman a should give attention to the anticipate having a particular in (1) other possibilities. They show hesitate to change their plans s selected courses wisely will have the time comes to do so.

For these reasons, there are t. students are expected to fulfill t for the Freshman year and one I
> r. Distributional Requiremer

> Freshmen may take no more mont, and no more than si Group (except that a student take as many as seven course laboratory course may take as They must take at least two at credits in Group III or IV.
2. Distributional Requireme: In meeting the Distribution. the student must take at l_{E} Distributional Groups by $t l$ enrollment.

Distributional Requirements, Requirements for the Bachel graduation all students can con: in a foreign language at the inte their studies in their major pr quaintance with a variety of fie Yale does not require prescrit encourages undergraduates to intellectual interests, that oper unities through which those ir studies always to that most eh third Distributional Requirerr career.
> 3. Distributional Requireme To qualify for the bachelor's course credits drawn from on the major. At least two cours four Groups. A student mu: language at the intermedic
the head of each college is a resident master. students on both academic and non-academic naster and the dean as fellows are about fifty 0 from different departments and schools of m reside in the college and others of whom
nan is assigned to one of the twelve residential ur, all Freshmen are required to live on campus. affiliated with Timothy Dwight or Silliman I quadrangle at the center of the University nose living on Old Campus may take a limited ege, and they participate fully in its life. After ; live on campus in their colleges, with about a choosing to live off campus. Whether they ,raduates normally continue as members of the ir undergraduate careers.

3RADUATE CURRICULUM

satures of a liberal education is that is has no quently does not prescribe any specific course t instead urges each undergraduate to design a iis own particular needs and interests from the e to college students in a university. ducation that it is neither too narrowly focused of educational policy, Yale College has always of distribution in studies as strongly as it has concentration. Thus Yale requires that each rears of college an area of concentration in one lepartments, while also expecting that the stuaracterized, particularly in the earlier years, by a ject matter and approach. The faculty of Yale lly declared its support of the principles embodiuidelines (see Guidelines for the Distri1. In addition, all undergraduates must fulfill the ts, which constitute the only specific rules limitoutside a student's major program.

JTIONAL REQUIREMENTS

nts for the Freshman Year and for the First Two ectives of these Distributional Requirements is , years of their undergraduate education students of departments and in this way become exposed is ways of thinking. Many students come to Yale r in one or more fields. Early in their college lents ought to take advantage of any head start ν pursue it at a higher level than would otherwise se in a familiar subject at a more advanced level uspects of the subject. In addition, in disciplines lages, where the maintenance and improvement
of skills greatly depend on continuity of application, students ought not lightly to consider interrupting the progress of their studies during their first years of college. During these years, nevertheless, they should also explore some subjects that they have never studied before. At the beginning of Sophomore year students are expected to make at least a tentative choice of the department or program in which they will major; science majors must do so. In choosing Freshman and Sophomore courses, therefore, students should give attention to the prerequisites for any major in which they anticipate having a particular interest. But they should not close their minds lo other possibilities. They should use the first year to explore, and then not hesitate to change their plans during the second year. Students who have selected courses wisely will have the groundwork to enter most majors when the time comes to do so.

For these reasons, there are two sets of Distributional Requirements that students are expected to fulfill before the end of their Sophomore year: one for the Freshman year and one for the first'two years.

1. Distributional Requirements for the Freshman Year.

Freshmen may take no more than four course credits in a single department, and no more than six course credits in a single Distributional Group (except that a student taking a course in a foreign language may take as many as seven course credits in Group I, and a student taking a laboratory course may take as many as seven course credits in Group IV). They must take at least two course credits in Group I or II and two course credits in Group III or IV.
2. Distributional Requirement for the First Two Years.

In meeting the Distributional Requirements for the Bachelor's Degree, the student must take at least two course credits in each of the four Distributional Groups by the end of the student's first four terms of enrollment.

Distributional Requirements for the Bachelor's Degree. The Distributional

 Requirements for the Bachelor's Degree are intended to assure that by praduation all students can confidently assert that they possess a competence In a foreign language at the intermediate level and that their work, including their studies in their major programs, has been grounded in a sound acquaintance with a variety of fields of inquiry and approaches to knowledge. Yale does not require prescribed courses in specific subjects, but instead incourages undergraduates to design programs that best reflect their own intellectual interests, that open the maximum range of intellectual opportunities through which those interests can be expanded, and that direct their mudies always to that most elusive of goals, a liberal education. Thus the Whird Distributional Requirement relates to the student's entire academic gireer.3. Distributional Requirements for the Bachelor's Degree. To qualify for the bachelor's degree, a student must earn at least twelve conrse credits drawn from outside the Distributional Group that includes the major. At least two course credits must be drawn from each one of the four Groups. A student must also demonstrate competence in a foreign language at the intermediate level, either by passing the appropriate

Yale College Programs of Study 1985-86
> courses or by examination.* No more than six course credits in a single Group may be employed to meet the Distributional Requirements for the Bachelor's Degree, except that astudent who takes more than four course credits in order to attain the required level of competence in a foreign language may offer as many as eight course credits in Distributional Group I.

For the purpose of distribution in Yale College, courses are classified into four Groups according to the following general scheme: \dagger

Group I: language and literature, English and foreign, ancient or modern.
Group II: architecture; art; classical civilization; film; history; history of art; history of science, history of medicine; humanities; music; philosophy; religious studies.
Group III: anthropology; archeology; economics; linguistics; management sciences; organizational behavior; political science; psychology; sociology.
Group IV: astronomy; biology; chemistry; computer science; engineering; forestry and environmental studies; geology and geophysics; mathematics; molecular biophysics and biochemistry; physics; statistics.

Beginning with students entering in 1983, a student is required to demonstrate competence at the intermediate level in a foreign language either upon entrance or before graduation, preferably by the end of Junior year. This requirement may be met by presenting an appropriate Advanced Placement Test score, or by passing an examination at Yale, or by passing an intermediate-level course in a foreign language at Yale. The languages offered at Yale in which a student may attain the required competence are: Arabic, Chinese, Czech, French, German, classical Greek, Hausa, Hebrew, Italian, Japanese, Latin, Polish, Portuguese, Russian, Serbo-Croatian, Spanish, Swahili, and Yoruba. Information about appropriate Advanced Placement Test scores, relevant courses, and the nature of the examinations in these languages is contained in Chapter III in the introductory statements of the departments offering courses in foreign languages.

Students who possess competence in a language other than those listed here, either because it is their native language; or because they learned it abroad or by study at another university, or by some other means, should consult the appropriate Director of Undergraduate Studies or their Residential College Dean to arrange for an examination. Students who, for physiological reasons, are not able to complete the language requirement may petition the Committee on Honors and Academic Standing for a waiver of the requirement. The Committee may, in individual cases and on petition of the student's major program, partially or fully waive the requirement for sound and weighty academic reasons.

[^0]GUIDELINES FOR TH
Although educated men and that a liberal education should i . tions below, which are intended of studies. The specific courses by goals must depend on individual select courses according to a r following Guidelines.
I. It is axiomatic that educated themselves effectively in their ou To suppose that anyone can th clearly is an illusion: words are 1 who cannot use them skillfully v cating ideas to someone else, bu standing them himself. Students: and preferably several, in which 1 for clarity of expression. The m such courses is English; its introd 120a or b, 122b, 125, 129) offer freqt many courses in various departn well as in the humanities, provic Among these are courses which r writing; they are designated " Wr
A student should also do form: language effectively depends to a one's reading. A person can fui language, and experience the thr study of the uses made of it by it writing with the study of literat own writing while deriving fror possible by his augmented skill. T of one's experience and personal instruction and pleasure for the widely and deeply enlarges the po or another underlies almost all int
2. Students should be able to guage other than their own, ands that language. Such abilities incro ity to the use of one's own lang forcign language well enough to: and to read it freely and with enj; use, will be an intellectual and p c lifetime. Professionally it can be c potentially international in theis plysicians, writers, and artistsadvantages and opportunities if h. preferably several. It is for these Guideline with the requirement t in a foreign language at the inte Junior year.
Using his skills in language, a st of a foreign language, because
> than six course credits in a single stributional Requirements for the it who takes more than four course 1 level of competence in a foreign t course credits in Distributional

le College, courses are classified into g general scheme: \dagger
glish and foreign, ancient or modern. civilization; fllm; history; history of ine; humanities; music; philosophy;
gy; economics; linguistics; managefior; political science; psychology;
emistry; computer science; engineeries; geology and geophysics; mathehemistry; physics; statistics.
in 1983, a student is required to demiate level in a foreign language either preferably by the end of Junior year. resenting an appropriate Advanced 1 examination at Yale, or by passing an gn language at Yale. The languages ly. attain the required competence are: man, classical Greek, Hausa, Hebrew, guese, Russian, Serbo-Croatian, Spanin about appropriate Advanced Placeund the nature of the examinations in ter III in the introductory statements a foreign languages.
: in a language other than those listed $=$ language, or because they learned it rsity, or by some other means, should Undergraduate Studies or their Resiir an examination. Students who, for o complete the language requirement ors and Academic Standing for a waiver may, in individual cases and on petition ially or fully waive the requirement for ;.

It any time before 1983-84 are not required, monstrate competence in a foreign language

Distributional Group in addition to the one up number of a course is the Roman numeral LAPTER III.

GUIDELINES FOR THE DISTRIBUTION OF STUDIES

Although educated men and women may never agree about everything that a liberal education should include, nearly all do agree on the propositions below, which are intended to serve the student as guides in his choice of studies. The specific courses by which the student achieves his educational goals must depend on individual interests and needs, but all students should select courses according to a rcasoned plan that embodies each of the following Guidelines.
r. It is axiomatic that educated men and women should be able to express themselves effectively in their own language, both in speech and in writing. To suppose that anyone can think clearly even though he cannot write clearly is an illusion: words are the most basic tools of thought. A person who cannot use them skillfully will be handicapped not only in communicating ideas to someone else, but also in defining, developing, and understanding them himself. Sudents should therefore choose at least one course, and preferably several, in which they write papers that are evaluated closely for clarity of expression. The most obvious department in which to find such courses is English; its introductory courses (English IIOa, II2a, IIS, II6b, 120a or b , I215, 125 , 129) offer frequent opportunities for writing. In addition, many courses in various departments, in the sciences and social sciences as well as in the humanities, provide special attention to prose composition. Among these are courses which have been especially designed to emphasize writing; they are designated "Writing Intensive" (wi) in Chapter III.

A student should also do formal course work in English literature. Using language effectively depends to a large extent upon the scope and quality of one's reading. A person can fully grasp the possibilities of the English language, and experience the thought and feeling it opens up, only by a study of the uses made of it by its greatest masters. By joining the study of writing with the study of literature, a student will inevitably improve his own writing while deriving from his reading an increased pleasure made possible by his augmented skill. The study of literature leads to an expansion of one's experience and personal horizons, and is a continuing source of instruction and pleasure for the duration of one's life. Above all, reading widely and deeply enlarges the power of the imagination, which in one way or another underlies almost all intellectual endeavor.
2. Students should be able to understand, speak, read, and write a lanpuage other than their own, and should be acquainted with the literature of that language. Such abilities increase subtlery of mind and sharpen sensitivity to the use of one's own language. Students should know at least one forcign language well enough to speak it fluently, if it is a modern language, and to read it freely and with enjoyment. Such a skill, if preserved through use, will be an intellectual and personal asset throughout a person's entire lifetime. Professionally it can be equally important. Most careers today are potentially international in their range. Businessmen, lawyers, teachers, physicians, writers, and artists-anyone in any profession has superior idvantages and opportunities if he knows at least one foreign language, and preferably several. It is for these reasons that Yale College augments this Guidcline with the requirement that each student demonstrate competence In a foreign language at the intermediate level, preferably by the end of Junior year.
Using his skills in language, a student should also enter into the literature of a foreign language, because only through such study can a person
experience another culture fully enough to broaden his range of feeling and judgment. The question of which literature or literatures to study will depend on a student's preparation and future goals. Graduate schools, for example, commonly require a reading knowledge of at least two modern foreign languages (usually French, German, or Russian); for some fields of graduate work, a knowledge of Latin or Greek is required as well. But a student should also consult personal interests and tastes: a student who likes English Romantic poetry, for example, might study French or German Romantic poetry in the original; one who is interested in Spenser or Milton might want to read Virgil in Latin.

In starting a new language in college, students should plan to take at least two years of study or an intensive course covering that amount of material in one year, in order to acquire fluency in speech and writing. They may then proceed to a literature course in that language. Entering Freshmen who have already acquired a high degree of proficiency in one foreign language should seriously consider taking a literature course in that language during their Freshman year, because both skill and confidence in languages can easily wane with a year's disuse.
3. Just as the study of a foreign language and its literature helps to overcome geographical provincialism, so does the study of other times help to correct temporal provincialism. An educated person needs a historical perspective on his own times, and that can come only from studying other civilizations and cultures, either those from which his own culture has developed, or those different from his own. Certainly no student ought to leave college without having studied the history, art, music, philosophy, religion, or literature of the ancient world or the Middle Ages. Ideally, one ought to study the arts, artifacts, and ideas of both the modern and the ancient worlds, but if one must choose between the two, it would be wise to begin with the ancient. As for any student who may not have had a good general course in American history in secondary school, he should obviously take one in college.
4. Mathematics is the basic language of the natural and the social sciences, and has become a uscful tool in many of the humanities. So pervasive are mathematical techniques that contemporary men and women may not consider themselves truly educated until they have an understanding of the fundamentals of mathematics. At a minimum students should have a proficiency in mathematics at the level of calculus. Students without this foundation should probably acquire it in Mathematics ma-míb or mea-nsb before proceeding further. Those wishing to open opportunities for advanced study in a variety of fields other than mathematics may need to take appropriate advanced courses in mathematics. Since not every subject requires the same kind of mathematical knowledge, the most immediately useful course for a student's purpose may not be found in the Mathematics department itself but rather in one or more of the following departments or programs: Computer Science, Economics, Engineering and Applied Science, Molecular Biophysics and Biochemistry, Political Science, Psychology, Sociology, or Statistics. These departments offer courses in the mathematical or statistical methods used in their disciplines. Whatever course a student chooses in order to broaden his mathematical knowledge, however, skill in mathematics should be maintained, because, like language, it is likely to dissipate if it is not used.
s. Acquiring a detailed familiarity with several natural and applied sciences is a practical necessity for some students. For all students, however,
being educated means developing a b has achieved, and what it might contia in the last three hundred years scienc "ational inquiry and knowledge witho, "knowing" or how some scientific fa others. Only by studying a science can cducated citizens need: an ability to C distinguish quackery from responsiblc are known and which unknown, whic able, to science. Studying a scicnce ro can learn to appreciate both the close theoreticians and the careful observatic mentalists. Only by studying a science e puzzlement, and beauty that scientists is to appreciate a thousand intricate colfrom casual observation but which, on life.
Students with little previous prepar: courses without prerequisites in all of t the Residential College Seminars. Intre: available for students with more backg majors. It is impossible to overemphasi study of science early in college, espe inclination toward scientific careers.
6. Finally, to understand the duties : human being among other human being with at least one of the social sciences. I sciences often rely heavily on mathemati rather than on things. At a time when t problcms are increasing, the future of m significantly on the insights achieved th cated person should have some underst and are learning about living together. N to have a knowledge of the cultures of E America, as well as of those of Western E Yale curriculum contains a wide variety with social systems, governments, econon
What a student ultimately derives fro viously depends in large measure upon hi study. In fulfilling these Guidelines, as in goals, students should seek broadly for it advisers and Residential College Deans, a uate Studies or other faculty members programs. No adviser will prescribe a responsibility of shaping a program is the make use of all the advice available in program. It would be impossible, and s attempt to map out at the beginning of his for the next eight terms. Yet it is importar and always to plan with these principles in
Although these Guidelines are not aci student must display proficiency in a foreig that a student's program will reflect thesc
ugh to broaden his range of feeling and 1 literature or literatures to study will and future goals. Graduate schools, for ling knowledge of at least two modern German, or Russian); for some fields of atin or Greek is required as well. But a al interests and tastes: a student who likes umple, might study French or German ne who is interested in Spenser or Milton
lege, students should plan to take at least course covering that amount of material uency in speech and writing. They may ie in that language. Entering Freshmen h degree of proficiency in one forcign or taking a literature course in that lanrr, because both skill and confidence in sar's disuse.
gn language and its literature helps to ism, so does the study of other times help An educated person needs a historical that can come only from studying other those from which his own culture has 1 his own. Certainly no student ought to tied the history, art, music, philosophy, It world or the Middic Ages. Ideally, one , and idcas of both the modern and the hoose between the two, it would be wise ny student who may not have had a good f in secondary school, he should obviously
uage of the natural and the social sciences, nany of the humanities. So pervasive are ontemporary men and women may not d until they have an understanding of the a minimum students should have a profiI of calculus. Students without this founit in Mathematics mina-II4b or inza-irsb e wishing to open opportunities for adother than mathematics may need to take mathematics. Since not every subject renatical knowledge, the most immediately rose may not be found in the Mathematics ie or more of the following departments or iconomics, Engineering and Applied Sciiochemistry, Political Science, Psychology, :partments offer courses in the mathematitheir disciplines. Whatever course a student mathematical knowledge, however, skill in ned, because, like language, it is likely to
arity with several natural and applied scisome students. For all students, however,

Wing, cducated means developing a broad view of what science is, what it has achicved, and what it might continue to achieve. One can be aware that In the last three hundred years science has come to be synonymous with rational inquiry and knowledge without realizing what a scientist means by "knowing" or how some scientific facts are more prone to change than whers. Only by studying a science can one develop the critical faculties that "slucated citizens need: an ability to evaluate the opinions of "experts," to distinguish quackery from responsible science, and to realize which things are known and which unknown, which are knowable and which unknowable, to science. Studying a science reveals new patterns of thought. Onc cin learn to appreciate both the close analysis and deductive reasoning of theoreticians and the careful observations and manipulative skill of experimentalists. Only by studying a science can one share the excitement, delight, prowlement, and beauty that scientists find in their work. To know science is to appreciate a thousand intricate coherences in nature, which are hidden from casual observation but which, once known, lend richness to everyday life:
Students with little previous preparation will find introductory science aurses without prerequisites in all of the science departments and among the Residential College Seminars. Introductory courses on other levels are wailable for students with more background and for prospective science majors. It is impossible to overemphasize the advantages of beginning the study of science early in college, especially for those students with any inclination toward scientific carecrs.
o. Finally, to understand the duties and problems facing everyone as a human being among other human beings, students should become familiar with at least one of the social sciences. Like the natural sciences, the social scicnces often rely heavily on mathematics, but their emphasis is on people ratincr than on things. At a time when the population of the world and its problems are increasing, the future of mankind's achievements may depend significantly on the insights achieved through the social sciences. An eduated person should have some understanding of what men have learned and are learning about living together. Modern Americans especially ought to have a knowledge of the cultures of Eastern Europe, Asia, Africa, Latin America, as well as of those of Western Europe and their own country. The Yale curriculum contains a wide variety of courses on these areas, dealing with social systems, governments, economies, histories, and cultures.
What a student ultimately derives from four years of study at Yale obviously depends in large measure upon his careful planning of a program of study. In fulfilling these Guidelines, as in pursuing their other educational boals, students should seek broadly for informed advice, from their faculty advisers and Residential College Deans, and from Directors of Undergraduate Studies or other faculty members in the various departments and programs. No adviser will prescribe a particular set of courses, and the responsibility of shaping a program is the student's, but each student should make use of all the advice available in order to plan the most effective program. It would be impossible, and surely imprudent, for a student to attempt to map out at the beginning of his studies a firm schedule of courses for the next eight terms. Yet it is important for the student to think ahead, and always to plan with these principles in mind.
Although these Guidelines are not actual requirements (except that a stedent must display proficiency in a foreign language), Yale College expects that a student's program will reflect these principles. Every student's pro-
gram must be approved by his dean and adviser, and every reasonable program will be approved. A student whose program departs markedly from the Guidelines will be obliged to persuade the Residential College Dean and faculty program adviser that it will still achieve for the student in its own way the goals of a liberal education.

MAJOR PROGRAMS

Students secking the B.S. or the B.A. degree with a major in science are expected to elect their majors at the beginning of Sophomore year, although a major in science may still be elected later if the student has completed the courses required to enter it. Sophomores interested in majoring in science should have their schedules approved by the Director of Undergraduate Studies or adviser designated by the department in which they wish to major. Students seeking the B.A. degree with a major in a field other than a science are expected to elect their major at the beginning of Junior year. The schedules for Sophomore year of these students must be signed by a Sophomore adviser, chosen by the student, with whom the program has been discussed.

All candidates for a bachelor's degree in Yale College must elect one of the major programs listed on page 28 . The requirements for a major are described in general terms in the sections below, and in more detail at the beginning of the course descriptions of each department or program in Chapter III. In every case students plan their schedule of courses in their major subjects or fields in consultation with a representative of the department or program concerned, and must secure the consultant's written approval. Students should acquaint themselves fully with all the requircments of the major they plan to enter, considering not only the immediate choice of courses but also the plan of their entire work in the last two or three years in college.

SELECTION OF A MAJOR

In designing a program of study, the student ought to plan for depth of concentration as well as breadth of scope. To study a subject in depth can be one of the most rewarding and liberating experiences a person can secure and can form the basis of the interests and occupations of a lifetime. Although no one should specialize to the neglect of distribution, knowledge advances by specialization, and one can gain some of the excitement of discovery by pressing toward the outer limits of human knowledge in a particular field. Intense study of a seemingly narrow area of investigation will often disclose ramifications and connections that alter perspectives on every other subject. Such study also sharpens a person's judgment and acquaints him with processes by which new truths can be found.

In order to expose themselves to this kind of experience, students must choose a field of study that will be their major field, that is, the subject in which they will work more intensively than they do in any other. A list of possible majors in Yale College from which such a choice is to be made is given below on page 28 . Specific requirements for each major are established by the department or program concerned and are explained in Chapter III.

Some students will have made a tentative choice of a major before entering college. Others will have settled on a general area-for example,
the natural sciences or the humanitics ular department or program they in completely undecided. Past experienc their minds made up often change th. who feel certain of their choices sh change. In selecting courses during th in mind not only the application of the the need for a preliminary exploration cirawn, in order to become aware of tl
As in the case of the Guidelines, the in designing a program, but once ag: in selecting courses.

1. In most of the humanities and soc from elementary to advanced courses. example, English, psychology, or hist because there are few prerequisites, at the Freshman or Sophomore year, on work done in secondary school.
2. In some other fields of study, s subjects as foreign languages and liter taken in chronological order from the to major in one of these fields, the stu Preshman year. If the initial courses ar be too late to begin a major in these Freshman courses are prerequisites for
3. In order, therefore, to attain t l options for the upperclass years, each his probable choices of a major befor has even a remore interest in majoring in the work of the Freshman year a cot courses in the natural sciences, one of 4. No matter what major a studen language required in the Distributio Degree is bound to be useful in his st ably use a foreign language would be or Sophomore year courses that will intends postgraduate study should ker Ph.D. degree usually include a reading commonly French, German, or Russi:
s. Many of the courses open to Fres in secondary school. Students will pr lireshman courses in areas in which t| iarity and interest, but for the sake of being unduly limited in their range of some courses in fields that are wholly,

THE MAJOR
The major consists of a number c program usually includes twelve terr hunior and Senior years. Majors are c partmental or interdisciplinary progr grams, a limited number of courses

[^0]: *Students who entered Yale College at any time before 1983-84 are not required, in order to qualify for graduation, to demonstrate competence in a foreign language at the intermediate level.
 \dagger Some courses may fall into another Distributional Group in addition to the one indicated in this classification. The Group number of a course is the Roman numeral in the data line of the course listed in CHAPTER III.

