familiar territory. When in doubt, Freshmen should, after seeking asp vice, trust to their energics and choose the more challenging courses.
In deciding about the appropriate courses in which to place thera selves, Freshmen should first read carefully the material in this chapte and in the Academic Handbook for Freshmen, and then examine the intrey ductory information about particular fields in Chapter III of this but letin. (The Academic Handbook is mailed to all Freshmen during the summer.) The introductory passages in Chapter III of this bulletry contain information concerning courses that are especially appropriae for Freshmen as well as explanations of the differences in level or apt proach among various introductory courses. After considering the des scriptions of course offerings, Freshmen should consult their Freshmad faculty advisers. Since advisers cannot know everything about every subject of instruction, the student should regard the faculty adviser not ond as a source of information but also as a point of contact with other mems bers of the faculty who have the more precise and specific information a particular Freshman may need. The faculty adviser may therefore refert student with special qualifications or problems to the Director of Undert graduate Studies of a department or program, to a departmental place ment officer, or to a departmental adviser in the student's Residentid College. The names of these members of the faculty are given with the introductory information on each subject described in Chapter III, and no Freshman should hesitate to consult them at any point during the academic year, particularly during the first weeks of the term.
In deciding the most appropriate level of placement, a student mat want to attend courses on a trial basis. Freshmen have ample time afters Freshman registration in which to submit their course schedules, so that a student can resolve doubts about placement by attending courses \mathbf{x} two levels (or on two different aspects) of the same subject. Discussions with the instructors of these courses will usually be helpful, because in that context the question of a student's placement can be explored in \boldsymbol{c} concrete and exact way. Even after the term is under way, with the per mission of the department a change of level in such subjects as foreig languages or mathematics may be arranged if the instructor and studera agree that it is appropriate.
Departments offering instruction in subjects for which students m take Advanced Placement or Achievement tests have drawn up placement policies that are fully described in the Academic Handbook for Freshmex Although these policies are intended to answer most of the questione that Freshmen may have, they cannot take into account everyone's ist dividual situation. Freshmen with questions about placement that a not answered in the Academic Handbook or in this bulletin are invited discuss their qualifications with the appropriate Director of Undergrad uate Studies or departmental representative

PLACEMENT IN ADVANCED COURSES AND ACCELERATION CREDIT

The term "piacenome" as it is used in this chapter simply means cligibitet to enroll in an adranced course. Such eligibiity is different from accol

HENRY LUCE COURSE, 1994-95

For a description of the Henry Luce Course to be offered in 19 see the Fall Supplement.

MANAGEMENT SCIENCES
 (See under Operations Research.)

MATHEMATICS

(See also APPLIED MATHEMATICS)

Director of Undergraduate Studies: Richard Beals, 220A LOM, 432-41? Walter Feit, 216 LOM, 432-7314 [Sp]
faculty of the department of mathematics
PRofessors
Richard Beals
Ronald Coifman
Walter Feit
Igor Frenkel
Howard Garland
Roger Howe (Chair)
Peter Jones
Serge Lang
Ronnie Lee
Laszlo Lovasz
Benoit Mandelbrot
(Adjunct)

Assistant Professaes. Jay Jorgenson jay Jorgenson
Boris Khesin Nantian Qian Ravi Ramabrishna
J. W. Gibbs Instructecer Hou Hong Fan an Grojnowski Nets Katz
Wei-Ping Li Feodor Malikov Ana Maria Vargas

Both course offerings and the major in Mathematics reflect the mita roles of mathematics itself: as the language and tool of the sciences, $2:$ cultural phenomenon with a rich historical tradition, and as a mode? abstract reasoning. The Mathematics major provides a broad educata in various areas of mathematics in a program flexible enough to accest modate many ranges of interest.
B.A. and B.S. degree programs. The prerequisite for both degree pr grams is Mathematics izoa or b or its equivalent. The B.A. degree pers gram normally consists of ten term courses in Mathematics numberex $222 a$ or b or higher. Each student is expected to take either Mathemats 230 or its equivalent: Mathematics 222a or b and 250 a. The student is 2 expected to take at least two term courses in each of three of the follow ing categories: Analysis (230 which counts as one term course, 246a ori 250a, courses between 300 and 349); Statistics and Applied Mathemne: (courses between 241 and 249, 260b, 400a; certain courses in App ${ }^{\text {jid }}$ Mathematics, Computer Science, Engineering and Applied Science, Operations Research, as listed below in "Courses in Other Departmenes. that are Particularly Relevant to the Major"); Algebra and Number Thewr (222 a or $\mathrm{b}, 230$, which counts as one term course, courses between $\%$ and 399); Geometry and Topology (425b, 430b, 435b); Logic and Founsix tions (270a, courses between 450 and 469). All Mathematics majors 2 urged to take at least one of either Computer Science 201a or b or 440 which may be counted as a term course in applied mathematics. In sort
denaces permission may be granted to take additional required term Wixtes in other departments (e.g., Computer Science, Engineering and Whed Science, Operations Research, Physics, Statistics).
WWandidate for the B.S. degree must take, in addition to the ten term Wineses listed above as required for the major in Mathematics, at least *) sdvanced term courses in the physical sciences, to be chosen with the Wroval of the Director of Undergraduate Studies.
Why student interested in a Ph.D. degree in pure mathematics is Wngly urged to include the following courses in his or her program: Wahematics $230,301 \mathrm{a}, 305 \mathrm{~b}$, 310a, 350 a , and 370 b . Such a student should 4us se eriously consider taking one or more graduate-level courses. StuUTes whose interests lean more toward applications of mathematics 2eard take Mathematics 222a or b and 250a; in addition, such students Whald especially consider the following courses: Mathematics 24ia, 4exb, 246a or b, 260b, 300b, 310a, 400a, and 435b.
Wae intensive major. Candidates for a degree with an intensive major in Whematics are expected to include at least two terms of graduate Wurse work, or of equivalent independent study, in their programs. FaW4arity with the material of the following courses should be considered 2extrequisite to graduate courses in the respective categories: Algebra: Wheourses in the range 350-399. Analysis: Mathematics 301a, 305b, 310 a . Hefraic Topology: Mathematics 3ora, 350a. Logic and Foundations: Mathemrics 270a, $454 \mathrm{~b}, 456 \mathrm{a}$.
Evior requirement. A student majoring in Mathematics is required Wifing the Senior year either to take the Senior seminar (Mathematics Wta or b), or to give an oral presentation on some topic selected by Wernbers of the faculty. For details, consult the Director of Undergradere Studies.
Whe following members of the department may be consulted by stu-*-wes through their Residential College affiliation:

sk, P. Jones
 BR, R. Lee
 cc, R. Beals
 TD, R. Coifman

IE,T.Tamagawa

MC, G. Seligman
PC, G. Mostow
SY, R. Szczarba
SM, R. Beals
tc, W. Feit
tc, W. Feit

DEGREE PROGRAM

Cadents who, by the end of their Senior year, complete the requirediants of the department for the M.S. in Mathematics will be eligible to Wexeive this degree at their Senior Commencement. Required are: (1) wht term courses numbered 500 or higher, most of which must be comWiesed with grades of High Pass or better; (2) a reading knowledge of Wanthematical literature in a foreign language of importance for mathe2matical research (normally French, German, or Russian); (3) satisfactory extormance on a general oral examination.
2. The master's program is in no sense a substitute for the B.A. or B.S. proWrm; rather, it is designed to accommodate a very few exceptional stuEmts who, by means of accelerated or independent study, can satisfy the * Perpartment as to their command of the content of the normal undergradsare program. Candidates must submit to the Director of Undergraduate

Studies, during spring term of Sophomore year, a proposal whic sees this level of achievement by the end of Junior year. Their starss progress will be reviewed before they are permitted to continutgat program in Senior year.

At least two terms of graduate work are to be taken in the Junier? (normally courses in algebra or analysis will be the first graduate coexd taken). The general oral examination covers a list of topics available 4 the Director of Graduate Studies, and will be accepted in lieu of the Senior oral presentation. Details concerning the requirements $f \circ$ master's degree may be obtained from the Director of Graduate Stra:

PLACEMENT IN COURSES

Qualified Freshmen and Sophomores may, with the permission of 5 structor, take any of the courses numbered 222a or b or above.

There is a three-term sequence of calculus courses, Mathematics or b , insa or b , and i20a or b . Mathematics niza or b is an introdars calculus course which presupposes only knowledge of basic techireqe from algebra, analytic geometry, and trigonometry. Students whest already taken some calculus should consider Mathematics usa or b Mathematics I20a or b.

Freshmen taking calculus are normally placed in Mathematics insa, or izoa, according to their backgrounds and, in particular, to t scores in Achievement or Advanced Placement tests. It is expected not absolutely required) that any Freshman applying for placement: advanced course (i.e., insa or b or higher) will have taken the Adves Placement Test in calculus. All placement is subject to change duringé term if necessary. Further information about level of placement is z in the section on Mathematics in Chapter VI of the booklet Aca? Handbook for Freshmen.

From Mathematics insa or b a student would naturally continue to $\mathrm{re}:$ or b or to Mathematics 230 . Mathematics 230 covers approximately $=$ same material as do the three courses, Mathematics i20a or b, 22za c and 250 a, but in greater depth and with more emphasis on the undert concepts. Note that permission of the instructor is required to z Mathematics 230 ; such permission is routinely granted to students ${ }^{3}$ received a grade of 5 on the Advanced Placement Test in mathematics: who obtain a grade of A in Mathematics issa or b . After Mathematics fot or b, students with a strong interest in abstract mathematics shoulds riously consider taking Mathematics 230 .

REQUIREMENTS OF THE MAJOR

Prerequisite: Math izoa or b or equivalent
Number of Courses: B.A. degree- 10 term courses; B.S. degree- 12 courses beyond prerequisite, within which totals Math 480a or b (Senior inar), if elected, is included
Distribution of Courses: B.A. degree-2 courses in each of 3 categories cho from among (a) Analysis, (b) Statistics and Applied Math, (c) Algebra Number Theory, (d) Geometry and Topology, (e) Logic and Foundations I: degree-same, and 2 advanced-level courses in the physical sciences, with proval of DUS
Specific Courses Required: Math 230 or the combination of Math 2223usi and 250 a
**ztution Permitted: Certain relevant courses in Applied Math, Computer Wrexce, Engineering and Applied Science, Operations Research, as listed be34.* wnder "Courses in Other Depts," with permission of DUS

Want Requirement: Senior seminar (Math 480 a or b), or oral presentation Wat eapic sclected by the faculty
*esarve Major: 2 courses on graduate level counted among the required - Satirses

2RODUCTORY COURSES: Mathematics in a or b, insa or b, i20a or b, WhaO
4. WIISIS: Mathematics 230 (which counts as one term course), 246a or b, W. 230a, 300b, 301a, 305b, 310a, $315 \mathrm{~b}, 320 \mathrm{a}, 325 \mathrm{~b}$

WTHSTICS AND APPLIED MATHEMATICS: Mathematics 241a, 242b, 244a, 245b, 246a or b, 260b, 400a; Computer Science 20Ia or b or 440b; E\&AS 194a or b; Operations Research 235a
WCEBRA AND NUMBER THEORY: Mathematics 222 a or b , 230 (which sounts as one term course), $350 \mathrm{a}, 353 \mathrm{~b}, 354 \mathrm{~b}, 370 \mathrm{~b}, 38 \mathrm{oa}, 38 \mathrm{Ib}$
H2YIETRY AND TOPOLOGY: Mathematics $425 \mathrm{~b}, 430 \mathrm{~b}, 435 \mathrm{~b}$
Fivic AND FOUNDATIONS: Mathematics 270a, 454 b , 456a, Philosophy 204a, 205b

TODUCTORY COURSES
Whe courses do not count toward the requirements of a major in Mathdetanes. Students wishing to enroll in one of these courses are expected Wereregister for a specific section. In the fall, preregistration is on Tues-
T. August 30,1994 , from 9.30 A.M. to 4.30 P.M. in 432 DL ; in the spring, 2 xegistration is on Monday, January 9, 1995, from 9.30 A.M. to 4.30 4. . also in 432 DL. Those who do not preregister may be excluded from

Winn s
Wranatics niza or b, Calculus of Functions of One Variable I.
Wraneo Tamagawa [F], George Seligman [Sp]. 1. 3 htBa Not cR/D/F

For sections see the Fall or Winter Supplement IV(69) Lzints and their properties, differentiation of functions, applications of Thertiation, integration. No prior acquaintance with calculus is assumed. 45:
virmatics insa or b, Calculus of Functions of One Variable II.
Wat Iorgenson [F], Ronald Coifman [Sp].
3. 3 HBA Not CR/D/F

For sections see the Fall or Winter Supplement IV(69)
A continuation of Mathematics in2a or b. Applications of integration, inWixtaon techniques, improper integrals, infinite series. After Mathematics iarb or the equivalent; open to Freshmen with some preparation in calculus.

Prationastics i2oa or b, Calculus of Functions of Several
7. Yariables. Ronnie Lee [F], Howard Garland [Sp].
*) 3 HTBA Not cr/d/f
For sections see the Fall or Winter Supplement IV (69)
thayixic geometry in three dimensions, using vectors. Real valued func-
-sot two and three variables, partial derivatives, gradient and dircctional - Farive, level curves and surfaces, maxima and minima. Parametrized Fres in space, motion in space, line integrals, applications. Multiple inteW. with applications. After Mathematics insa or b , or by permission.

Mathematics 190a (49190), Fractal Geometry. Staff. MWF 11.30-12.20 IV (34)
A visual introduction to the geometry of fractals and the dynest chaos, accessible to nonscience students. Study of mathematical parse. peating on many levels and expressions of these patterns in nature, arty and literature. Does not count toward the requirements of the major sw) matics.

INTERMEDIATE AND ADVANCED COURSES

Courses counting toward the requirements of a major in Mathernaisis
Mathematics 222a, Linear Algebra and Matrix Theory
Lect I (4922201) TTh 10.30-II.20; disc. I HTBA Howard Garlax Not CR/D/F IV(68)
Lect 2 (4922202) MWF 10.30-11.20; disc. I hTBA Ian Grojnomythe Not CR/D/F IV(68)
(Students must enroll in a discussion section assigned to their lectate: An introduction to the applications of vector spaces in algebra, 2 and geometry. Matrix algebra, determinants, eigenvalues, quadratic 8 principal axes, and linear programming. After Mathematics nisa or b m permission.

Mathematics 222b, Linear Algebra and Matrix Theory
Lect I (492220I) MWF 8.30-9.20; disc. I HTBA Peter Schulthest Not CR/D/F IV(68)
Lect 2 (4922202) Trh 9-10.15; disc. 1 HTBA Ian Grojnowski Not CR/D/F IV(68)
(Students must enroll in a discussion section assigned to their lecteres
The content of this course is identical to that of Mathematics 2222. .f Mathematics issa or b or with permission.
\star Mathematics 230 (49230), Vector Calculus and Linear Algebra4. Gregory Margulis.

Lect MWF 9.30-10.20; disc. 1 HTBA Not cR/D/F IV(32)
A careful study of the calculus of functions of several variables, con
with linear algebra.
Mathematics 241a/Statistics 241a ${ }^{\text {G }}$, Probability Theory.
Nicolas Hengartner.

Mathematics 242b/Statistics $242 \mathrm{~b}^{\mathrm{G}}$, Theory of Statistics.
Andrew Barron.

Mathematics 244a/Appl.Mathematics 244a (49244), Discrete
Mathematics I. Katalin Vesztergombi. TTh 9-10.15 IV (2I)
Basic concepts and results in discrete mathematics: graphs, trees. of nectivity, Ramsey-theorem, enumeration, binomial coefficients, Sasta numbers. Properties of finite set-systems. No specific level of calculus sumed. After Mathematics $115 a$ or b or equivalent, or by permission.

- Wenatics $245 \mathrm{~b} /$ Appl.Mathematics 245 b (49245), DISCRETE Weinematics II. Laszlo Lovasz.

Th 9 -IO.I5 IV(21)
sartechniques of proof, algorithm design, and analysis in discrete mathWers. Graph theory: matchings, flows, planarity, extremal graphs. Finite exnerates and other symmetric structures. Random graphs and other probWe moc constructions. Asymptotic form in combinatorics. Some linear Wexa assumed. After Mathematics 244a and i20a or b, or by permission.
unatics 2460 or b (49246), Ordinary Differential Equations 246a Trh 9-10.15 Staff Not CR/D/F IV(2I) 246 b TTh ${ }_{\text {11.30-12.45 Frank Geschwind }}$ Not CR/D/F IV(24) Remerical solution methods. Geometric and algebraic properties of dif-- 5 whal equations. First-order equations, second-order equations, linear 2nes with constant coefficients. After Mathematics 120a or b or the equiv(W) miter or concurrent with Mathematics 222a or b or equivalent.
-ratics $250 a^{6}$ (49250), Vector Analysis. Roger Howe.
Wham
MWF 9.30-10.20 Not CR/D/F IV(32)
Thatulus of functions of several variables, using vector and matrix meth Whyerse and implicit function theorems. Transformation of multiple Wigls. Line and surface integrals of vector fields. Curl and divergence. rictential forms. Theorems of Green, Gauss, and Stokes. After Mathematics यer, 222a or b, or the equivalents.

4 -matics 260 b (49260), Varlational Methods. Igor Frenkel. MWF 9.30-10.20 Not CR/D/F IV (32)
Ar introduction to the calculus of variations, with connections to partial -ential equations, and Sturm-Liouville eigenvalue problems. After Math6. Ni20a or b, 222a or b, 246a or b, or the equivalents.

4,
TIT II.30-12.45 Not CR/D/F IV(24)
Hgebra of sets; finite, countable, and uncountable sets. Cardinal numbers terrdinal arithmetic. Order types and ordinal numbers. The axiom of wise and the well-ordering theorem. After Mathematics 120a or bor the sesulent.
watent
matics 3006 (49300), TOPICS IN ANALYs
MWF 1.30-2.20 Not CR/D/F IV (36)
Ta introductory course in analysis with topics to be chosen from infinite *irs, the theory of metric spaces, and fixed-point theorems with applicaHins. Students who have taken Mathematics 230 should take Mathematics 3. Hustead of this course. After Mathematics 250 a or by permission.
4.
matics 3012 (4930I), Introduction to Analysis. Richard Beals.
Th I-2.15 Not CR/D/F IV(26)
Foundations of real analysis, including metric spaces and point set toW4y, infinite series, and function spaces. After Mathematics 230 or the rasient.

Why,

tematics 305 b (49305), Real Analysis. Peter Jones
Th I-2.I5 Not CR/D/F IV (26)
The Lebesque integral, Fourier series, applications to differential equa. After Mathematics 30 a or by permission.

Mathematics 3IOa (49310), Introduction to Complex Analrsis. Serge Lang. TTh IL.30-12.45 Not CR/D/F $\quad \operatorname{IV}(24)$
An introduction to the theory and applications of functions of a osas variable. Differentiability of complex functions. Complex integratiky Cauchy's theorem. Series expansions. Calculus of residues. Conformase ping. After Mathematics 230 or 250 or the equivalent.
*Mathematics $315 b^{G}$ (49315), Intermediate Complex Analysis. Serge Lang.

TTh 11.30-12.45 Not CR/D/F Meets RP IV(24)
Continuation of Mathematics 310a. Topics may include argumert \boldsymbol{y}^{3} 絡 ciple, Rouché's theorem, Hurwitz theorem, Runge's theorem, analvre tinuation, Schwarz reflection principle; Jensen's formula, infinite prow Weierstrass theorem. Functions of finite order, Hadamard's theorenty dx omorphic functions. Mittag-Leffler's theorem, subharmonic functionty Mathematics 3 Ioa.
*Mathematics $320 a^{G}$ (49320), Measure Theory and Integration. TTh I-2.15 Not CR/D/F Meets RP IV(26)
Construction and limit theorems for measures and integrals on spaces; product measures; L^{p} spaces; integral representation of linear tie tionals. After Mathematios 305b or the equivalent.
*Mathematics $325 \mathrm{~b}^{\mathrm{G}}$ (49325), Introduction to Functional Analrss Boris Khesin.

TTh r-2.15 Not cR/D/F Meets RP IV(26)
Hilbert, normed, and Banach spaces; geometry of Hilbert space Fischer theorem; dual space; Hahn-Banach theorem; Riesz representere theorems; linear operators; Baire category theorem; uniform boundets. open mapping, and closed graph theorems. After Mathematics $320 a$.
*Mathematics 350 a (49350), An Introduction to Abstract Algebra Igor Frenkel.

MWF II.30-12.20 Not CR/D/F IV(34)
Group theory. Rings, with emphasis on integral domains and polynotest rings; modules over Euclidean domains; applications to linear algebra. tid Mathematics 222a or b or the equivalent.

Mathematics 353b (49353), Representations of Finite Groups. George Seligman.

$$
\text { MWF 1.30-2.20 } \operatorname{IV}(36)
$$

Basic theory of representations and characters of finite groups: ortu gonality relations, induced representations, exceptional characters, theorem. After Mathematics $350 a$, or by permission.

Mathematics 354b (49354), Number Theory. Tsunco Tamagawa, TTh $11.30-12.45$ Not CR/D/F IV(24)
Prime numbers; quadratic reciprocity law, Gauss sums; finite fields tions over finite fields; ζ-functions. After Mathematics 350 a.
[Mathematics 355b, Geometric Algebra. 1995-96]
[Mathematics 370b, Fields and Galois Theory. 1995-96]

- weticr $380 a^{G}$ (49380), Algebra I. Walter Feit

Whe Mr 2.30-3.45 Not CR/D/F Meets RP IV(66)
Whe Wrwey of algebraic constructions and theories at a sophisticated level. Wewnclude categorical language, free groups and other free objects in cat2. Prax general theory of rings and modules, artinian rings, introduction to rextimgical algebra. After Mathematics 350 a and 370 b .

24:4matics $38 \mathrm{rb}^{\mathrm{G}}$, Algebra II. 1995-96]
 2P85-96]

Whematics $425 \mathrm{~b}^{\mathrm{G}}$, Computational Algebraic Geometry. I995-96]

Wevematics 430 , An Introduction to Algebraic Topology. [498-96]
eatematics 435 (49435), Differential Geometry.
4W Wincent Moncrief.
3th 9-10.15 IV(2I)
Weplications of calculus to the study of the geometry of curves and sur* $4=$ Euclidean space, intrinsic differential geometric properties of maniWand and connections with non-Euclidean geometries and topology. After 4emeratics 230 or 250 O or the equivalent

4. matics $454 \mathbf{b}^{\mathrm{G}}$, Foundations of Logic Programming. 1995-96

64ctimatics $456 \mathrm{a}^{\mathrm{G}}$, Recursive Function Theory. 1995-96]
(6)ixtiomatics 470a or b (49470), Individual Studies. Consult the

Director of Undergraduate Studies.
Not $\mathrm{CR} / \mathrm{D} / \mathrm{F}$ IV (O)
Sadividual investigation of an area of mathematics outside of those covWixn regular courses, involving directed reading, discussion, and either paWhat an examination. A written plan of study approved by the student's 20erer and the Director of Undergraduate Studies is required. The course Winormally be elected for only one term.

Tomics. Ilya Piatetski-Shapiro [F], Staff [Sp].

3 HtBA Not CR/D/F IV (50)

W number of mathematical topics chosen each term-e.g., differential toWixig, Lie algebras, mathematical methods in physics-and each explored Whe section of the seminar. Students present several talks on the chosen 28: Fulfills the Senior requirement.

WSORSES IN OTHER DEPARTMENTS THAT ARE PARTICULARLY 4 EiTLEVANT TO THE MAJOR
3 (x)
Whrmally two of the following courses may, with the permission of the Whextor of Undergraduate Studies, be counted with Mathematics 44 derses toward the requirements of the major.

Appl. Mathematics $333 \mathrm{a} /$ E. . A.S. 333a, Methods in Applied Mathematics. Juozas Vaisnys.

Computer Science zoia or b, Introduction to Computer Science Paul Hudak [F], Drew McDermott [Sp].

Computer Science 365b, Design and Analysis of Algorithms. Jeffery Westbrook.

Computer Science 366a, Models of Computation. Lenore Zuck.
Computer Science $440{ }^{\text {G }}$, Numerical Computation I. Vladimir Rokhlin.
E. © A.S. 194a orb, Ordinary and Partlal Differential Equatices with Applications. Juozas Vaisnys [F], Leslie Smith [Sp].
E.OA.S. 396b, Advanced Ordinary and Partial Differentiai. Equations with Applications. Nicholas Read.
E. ÚA.S. $496 \mathrm{a}^{\mathrm{G}}$, Probability and Stochastic Processes. Peter Schultheiss.

Operations Research 235a, Optimization I. Eric Denardo.
Operations Research 237b, Stochastrc Models. Offer Kella.

GRADUATE COURSES OF INTEREST

Each year the departments of Mathematics and Statistics offer a number of graduate courses, some of which are accessible to adves undergraduates. Further information may be obtained from respective Directors of Undergraduate Studies whose permissien together with that of the relevant Director of Graduate Studier required for admission.

MATHEMATICS AND PHILOSOPHY

This major allows students to explore those areas where philosophy mathematics meet, in particular, mathematical and philosophical lete and the philosophy of mathematics.
The prerequisite for the major is Mathematics i20a or b. A totidet twelve term courses in mathematics at the level of Mathematics i20az 4 or higher and in philosophy is required. At least five of these shoukt in mathematics and at least five in philosophy. Required courses inclest Set Theory (Mathematics 270a), and Foundations of Logic Progras ming (Mathematics 454b) or Logical Theory I (Philosophy 204a), bry of which must be taken before the end of the Junior year, although tetrex should preferably be taken before that year. Required courses also if clude:
(1) either of the following:
(a) Logical Theory II (Philosophy 20sb),

44 - requisite: Math I2Oa or b
Whenber of Courses: 12 term courses (within which total the prerequisites and Wax te Senior seminar are included)
Stratibution of Courses: At least 5 in each subject
Shecific Courses Required: Math 270 a , Math 454 b or Phil 204a, Math 456 a Fst Phil 205b, and an advanced philosophy course with substantive logical シmmponent
*sior Requirement: Senior seminar

MATHEMATICS AND PHYSICS

${ }^{2}$ ninimum of fourteen term courses in mathematics and physics above the Sophomore level is required, with at least six in each of the two subEers. A Senior essay, or a project from Physics 47 Ia , 472b, on a topic typropriate for the combined major and acceptable to both the Physics nd the Mathematics departments is also required. The student must eresent an oral report on this essay or project to the Mathematics degarment. Majors should consult Vincent Moncrief, 64 SPL, 432-6930.

Wepare students both for graduate studies in these areas and for entry fato appropriate positions in research laboratories, industry, or governWat, with possibilities for careers in engineering, medicine, law, or 4usiness. At Yale, three types of programs leading to a B.S. or B.A. deSee may be taken: a B.S. degree program with a major in Mechanical frgineering, or a B.S. degree program with a major in Engineering Ghences (Mechanical), or a B.A. degree program with a major in En8izeering Sciences (Mechanical). Prospective B.S. majors in both proErams are advised to complete introductory physics and mathematics 4 rough calculus (Mathematics nsa or b) by the end of their first year. I student's undergraduate engineering program usually culminates *ith one or more Special Project courses (Mechanical Engineering 471a, $4 ; 2 b)$ in which the student pursues a particular interest through designmiented projects and experimental investigations. Projects may be inisated by the student himself, may be performed in a team, or may be Erived from ideas of faculty members who place undergraduates in their ongoing research projects. More information is available from the Disector of Undergraduate Studies or the Chair.
B.S. degree program in Mechanical Engineering. This is a rigorous curriculum accredited by the Accreditation Board of Engineering and Techwology (ABET), which leads to a B.S. degree. Requirements of the program include successful completion of courses drawn from the folforving four general areas:

1. Mathematics: Mathematics 112a or b, insa or b, I20a or b; E.\&A.S. 494a or b; and one term course from E.\&A.S. 393a, 395b, 396b, 496a, or Hathematics 222a or b . For Structures, Mathematics 222a or b or its squivalent is required.
2. Basic Science: Physics 200a, 2010 (or $180 \mathrm{a}, 18 \mathrm{rb}$) and two laboratories lone from Physics $165 \mathrm{La}, 205 \mathrm{La}$ or Lb , and one from Physics 166 Lb , 206 La or Lb or equivalents), and at least one additional term course in chemistry (e.g., one term of Chemistry ins).
3. Engineering Science: Mech. Engineering 211b, 280a, 361a, 383a, 385b, 890 , and one computer science course (e.g.,
the Director of Undergraduate Studies, and
(a) one course chosen from Elec. Engineering 325 b or E.\&A.S. 245 a
(b) one course chosen from Mech. Engineering I85b, 315b, 366a, 384b, $400 \mathrm{a}, 469$ b, or 485 b
(c) one course chosen from Mech. Engineering 340a, 34ib, 357a, 365b, $380 \mathrm{~b}, 387 \mathrm{a}, 463 \mathrm{~b}$, or 486 a
(d) one additional course chosen from the previous two categories or chosen in consultation with the Director of Undergraduate Studies.
4. Engineering Design: Mech. Engineering 286Lb, $363 \mathrm{Lb}, 47 \mathrm{la}$ or 472 b , and 489 a .
The curricula in this program are arranged in prescribed patterns, but some departures from them are possible with the approval of the Direcror of Undergraduate Studics.
B.S. degree program in Engineering Sciences (Mechanical). Students who intend to pursue mechanics but who wish to follow curricula that are less stringent than those specified above may carn a B.S. degree in the program of Engineering Sciences (Mechanical). There are essentially six rerm courses of prerequisites in mathematics and physics, which are Wathematics in2a or b, II5a or b, 120a or b, Physics 180a, 181b (or 200a,
