MAT122 - Homework 6 Due March 17

- 1. Consider the function f given by $f(x) = \frac{1}{x^2 + 1}$. Follow the instructions to find where f is increasing, decreasing, concave up and concave down. Then graph the function.
- (a) Begin by using the quotient (or product) rule to show that

$$f'(x) = -\frac{2x}{(x^2+1)^2}$$
 and $f''(x) = \frac{8x^2-2}{(x^2+1)^3}$

You'll probably have to use the chain rule as part of the process. Show your work.

(b) Next solve f'(x) = 0 to find where f' changes sign. Use this to determine where f is increasing or decreasing.

(c) Next solve f''(x) = 0 to find where f'' changes sign. Use this to determine where f is concave up or concave down.

2. Differentiate

(a)
$$y = 2x^6 - x + 3$$

(b)
$$f(x) = 5^x + e^x$$

(c)
$$2\sqrt{x} + \sqrt[3]{x}$$

(d)
$$\ln(x) + \cos(x)$$

3. Use the product rule to differentiate

(a)
$$\cos(x)e^x$$

(b)
$$x^2 \ln(x)$$

4. Use the quotient rule to differentiate

$$(a) \qquad \frac{x+1}{x-1}$$

(b)
$$\frac{x}{\ln(x)}$$

5. Use the chain rule to differentiate

(a)
$$\sqrt{e^x + x}$$

(b)
$$e^{\sqrt{x}}$$

(c)
$$[\sin(2x+1)]^3$$