MAT122 - Homework 6 SOLUTIONS Due March 17

- 1. Consider the function f given by $f(x) = \frac{1}{x^2 + 1}$. Find where f is increasing, decreasing, concave up and concave down.
- (a) Begin by using the quotient (or product) rule to show that

$$f'(x) = -\frac{2x}{(x^2+1)^2}$$
 and $f''(x) = \frac{6x^2-2}{(x^2+1)^3}$

You'll probably have to use the chain rule as part of the process. Show your work.

$$f'(x) = \frac{(x^2+1)(0)-(1)(2x)}{(x^2+1)^2} = \frac{-2x}{(x^2+1)^2}$$
$$f''(x) = \frac{(x^2+1)^2(-2)-(-2x)(2(x^2+1)2x)}{(x^2+1)^4} = \frac{-2(x^2+1)^2+8x^2(x^2+1)}{(x^2+1)^4} = \frac{6x^2-2}{(x^2+1)^3}$$

(b) Next solve f'(x) = 0 to find where f' changes sign. Use this to determine where f is increasing or decreasing.

$$f'(x) = 0 \implies 2x = 0 \implies x = 0$$

Test the interval $(-\infty, 0)$: $f'(-1) = 1/2 \implies f'$ is positive on the interval $(-\infty, 0)$. Test the interval $(0, \infty)$: $f'(1) = -1/2 \implies f'$ is negative on the interval $(0, \infty)$.

Thus f is increasing on $(-\infty,0)$ and decreasing on $(0,\infty)$.

(c) Next solve f''(x) = 0 to find where f'' changes sign. Use this to determine where f is concave up or concave down.

$$f''(x) = 0 \implies 8x^2 - 2 = 0 \implies x^2 - \frac{1}{4} = 0 \implies x = \pm \frac{1}{2}$$

Test the interval $(-\infty, -\frac{1}{2})$: $f''(-1) = \frac{3}{4} \implies f''$ is positive on the interval $(-\infty, -\frac{1}{2})$. Test the interval $(-\frac{1}{2}, \frac{1}{2})$: $f''(0) = -2 \implies f''$ is negative on the interval $(-\frac{1}{2}, \frac{1}{2})$. Test the interval $(\frac{1}{2}, \infty)$: $f''(1) = \frac{3}{4} \implies f''$ is positive on the interval $(\frac{1}{2}, \infty)$.

Thus f is concave up on $(-\infty, -\frac{1}{2})$ and $(\frac{1}{2}, \infty)$ and concave down on $(-\frac{1}{2}, \frac{1}{2})$.

(d) Find the y-intercept, x-intercepts, horizontal and vertical asymptotes. Use this information and what you learned about f in parts (a), (b) and (c) to graph y = f(x).

y-intercept:

Set
$$x = 0$$
 and solve for y: $f(0) = 1 \Longrightarrow y$ -intercept = 1.

x-intercepts:

Set
$$y = 0$$
 and solve for x : $0 = \frac{1}{1 + x^2}$ has no solutions \Longrightarrow no x -intercepts.

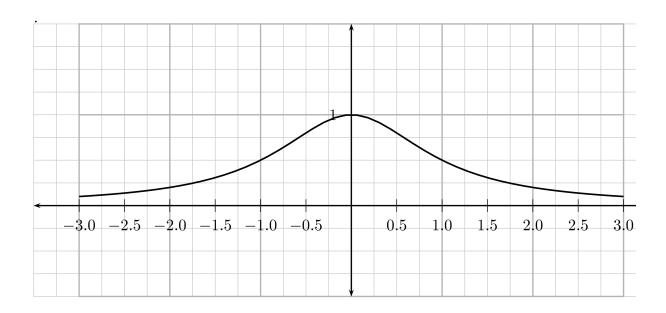
h-asymptotes:

$$\lim_{x\to\infty}\frac{1}{1+x^2}=0\Longrightarrow y=0 \text{ is horizontal asymptote}.$$

$$\lim_{x \to -\infty} \frac{1}{1+x^2} = 0 \Longrightarrow y = 0 \text{ is horizontal asymptote.}$$

v-asymptotes:

For a rational function, this can happen only where the denominator equals 0: $1 + x^2 = 0$ has no solutions \Longrightarrow no vertical asymptotes.



2. Differentiate

(a)
$$y = 2x^6 - x + 3$$

$$y' = 12x^5 - 1$$

(b)
$$f(x) = 5^x + e^x$$

$$f'(x) = \ln(5) \cdot 5^x + e^x$$

(c)
$$2\sqrt{x} + \sqrt[3]{x}$$

$$2\sqrt{x} + \sqrt[3]{x} = 2x^{1/2} + x^{1/3}$$

$$\frac{d}{dx} \left(2x^{1/2} + x^{1/3} \right) = 2 \cdot \frac{1}{2} x^{-1/2} + \frac{1}{3} x^{-2/3}$$
$$= x^{-1/2} + \frac{1}{3} x^{-2/3}$$
$$= \frac{1}{\sqrt{x}} + \frac{1}{3\sqrt[3]{x^2}}$$

(d)
$$\ln(x) + \cos(x)$$

$$\frac{d}{dx}\left(\ln(x) + \cos(x)\right) = \frac{1}{x} - \sin(x)$$

3. Use the product rule to differentiate

(a)
$$\cos(x)e^x$$

$$\frac{d}{dx}(\cos(x)e^x) = -\sin(x)e^x + \cos(x)e^x$$

(b)
$$x^2 \ln(x)$$

$$\frac{d}{dx} (x^2 \ln(x)) = 2x \ln(x) + x^2 \frac{1}{x}$$
$$= 2x \ln(x) + x$$

4. Use the quotient rule to differentiate

(a)
$$\frac{\sin(x)}{x}$$

$$\frac{d}{dx}\left(\frac{\sin(x)}{x}\right) = \frac{x \cdot \cos(x) - \sin(x) \cdot 1}{x^2}$$
$$= \frac{\cos(x)}{x} - \frac{\sin(x)}{x^2}$$

(b)
$$\frac{x}{\ln(x)}$$

$$\frac{d}{dx}\left(\frac{x}{\ln(x)}\right) = \frac{\ln(x) \cdot 1 - x \cdot (1/x)}{(\ln(x))^2}$$
$$= \frac{\ln(x) - 1}{(\ln(x))^2}$$

5. Use the chain rule to differentiate

(a)
$$\sqrt{\sin(x) + x}$$

$$\frac{d}{dx}\sqrt{\sin(x) + x} = \frac{1}{2\sqrt{\sin(x) + x}} \cdot (\cos(x) + 1)$$

(b)
$$e^{\tan(x)}$$

$$\frac{d}{dx}e^{\tan(x)} = e^{\tan(x)}\sec^2(x)$$

(c)
$$[\sin(2x+1)]^3$$

$$\frac{d}{dx}[\sin(2x+1)]^3 = 3[\sin(2x+1)]^2 \cdot \frac{d}{dx}\sin(2x+1)$$
$$= 3[\sin(2x+1)]^2 \cdot \cos(2x+1) \cdot 2$$
$$= 6[\sin(2x+1)]^2 \cdot \cos(2x+1)$$