Name

Student ID Number:

Instructions

- There are a total of 8 questions totaling 60 points possible.
- Be sure to show your reasoning for any answers which are not obvious or which require multiple steps. A correct answer without justification may not earn you any points. Moreover, incorrect answers preceded by valid reasoning may earn you partial credit.
- Please silence your cell phone.
- Raise your hand if you have any questions.
- Bring your exam to the front when completed.
- 1. (12pts) Let f(x) be the function whose graph is shown below.

Compute the following limits. If it does not exist write "DNE".

(a)
$$\lim_{x\to 3} f(x)$$

(b)
$$\lim_{x \to 1^-} f(x)$$

(c)
$$\lim_{x \to -2^-} f(x)$$
 1

(d)
$$\lim_{x\to 0} f(x)$$

(e)
$$\lim_{x\to 2} f(x)$$
 $\mathcal{D} \mathcal{N} \mathcal{E}$

(f)
$$\lim_{x\to\infty} f(x)$$
 1

2. (2pts) List all values for which the function above is not continuous.

3. (12pts) Compute the following limits:

(a)
$$\lim_{x \to -\infty} \frac{e^x}{x} > 0$$
 = (b) $\lim_{x \to 5^-} \frac{1}{5 - x} = \boxed{+\infty}$

(b)
$$\lim_{x \to 5^{-}} \frac{1}{5 - x} = \frac{1}{5 - x}$$

$$+ \infty \quad \text{since} \quad 5 - x > 0 \quad \text{when} \quad x < 5$$

(c)
$$\lim_{x \to 2} \frac{x-2}{x^2-4} = \lim_{x \to 2} \frac{x-2}{(x+2)(x-2)} = \lim_{x \to 2} \frac{1}{x+2} = \lim_{$$

$$= \lim_{X \to 2} \frac{x - 2}{(x + 2)(x - 2)}$$
 (d)
=
$$\lim_{X \to 2} \frac{1}{x + 2} = \lim_{X \to 2} \frac{1}{4}$$

(c)
$$\lim_{x \to 2} \frac{x-2}{x^2-4} = \lim_{x \to 2} \frac{x-2}{(x+2)(x-2)}$$
 (d) $\lim_{x \to \infty} \frac{5-12x^5}{3x^5+8x^2} = \lim_{x \to \infty} \frac{x-5}{3} = \lim_{x \to 2} \frac{x-5}{x} = \lim_{x \to 2}$

(e)
$$\lim_{x \to 0^+} \ln(x) = -\infty$$

(e)
$$\lim_{x\to 0^+} \ln(x) = -\infty$$
 (f) $\lim_{x\to \infty} \arctan(x) = \frac{\pi}{2}$

4. (6pts) Graph the functions. Indicate and label any x-intercepts and asymptotes.

(a)
$$2\cos(x+\pi)$$

(b)
$$\frac{x^2}{x^2-9}$$
 (Hint: Use the fact that $\frac{x^2}{x^2-9} > 1$ when $x > 3$ and when $x < -3$.)

5. (a) (3pts) Solve for
$$x$$
 using log base 3, \log_3 .

$$log_{3} 27^{x+1} = 9^{x-2}$$

$$log_{3} 27^{x+1} = log_{3} 9^{x-2}$$

$$(x+1) log_{3} 27 = (x-2) log_{3} 9$$

$$3(x+1) = 2(x-2)$$

$$3x+3 = 2x-4$$

$$x = -7$$

(b) (3pts) Solve for r.

$$\ln(r+1) + \ln(r-1) = \ln(8)$$

$$ln[(r+1)(r-1)] = ln8$$

 $eln(r^2-1) = ln8$
 $r^2-1 = 8$

$$r^{2}=9$$

$$r=\pm 3$$
hat
$$r=3$$

 $r^2-1=8$ reject negative $r^2=9$ \leq solution since, $r=\pm 3$ of $\ln(r-1)$.

3

6. (4pts) Use the intermediate value theorem to show that

$$p(x) = x^4 - 3x^3 + x^2 + 3$$

has a root between 1 and 2.

p is continuous since it is a polynomial.

$$p(1) = 1 - 3 + 1 + 3 = 2$$
 $p(2) = 16 - 24 + 4 + 3 = -1$

O is between $p(1)$ and $p(2)$.

Therefore, by the intermediate value theorem, $p(x) = 0$ has a solution between 1 and 2.

- 7. (12pts) $f(x) = x^2 + 1$. Use the limit definition of derivative to solve the following.
 - (a) Find f'(5).

$$f'(s) = \lim_{t \to s} \frac{(t^2+1) - (s^2+1)}{t-s} = \lim_{t \to s} \frac{t^2 - 2s}{t-s}$$

$$= \lim_{t \to s} \frac{(t^2+1) - (s^2+1)}{t-s}$$

(b) Write the derivative as a function of x. That is, find f'(x).

$$f'(x) = \lim_{t \to x} \frac{(t^2+1)^{-}(x^2+1)}{t-x} = \lim_{t \to x} \frac{t^2-x^2}{t-x}$$

$$= \lim_{t \to x} \frac{(t+x)(t+x)}{t-x}$$

$$= \lim_{t \to x} \frac{(t+x)(t+x)}{t-x}$$
in meters.
$$= \lim_{t \to x} \frac{t^2-x^2}{t-x}$$

(c) If f(x) gives the displacement at time x, measured in seconds, find the instantaneous velocity at time 13 seconds.

(d) Find the average velocity on the time interval [0,3].

$$V_{AVE} = \frac{f(3) - f(0)}{3 - 0} = \frac{(3^2 + 1) - (0^2 + 1)}{3 - 0}$$

$$= \frac{10 - 1}{3}$$

$$= \frac{3}{3} \frac{m}{5}$$

8. (6pts) Let f(x) be the function whose graph is shown below.

- a. Using a straight edge, draw a tangent line through the point (3, f(3)).
- **b.** Use the tangent line to estimate f'(3).