MAT122 Practice Exam 2

1. Consider the function f given by

$$f(x) = x^{4/3} + \frac{x}{3}$$

Use a linear approximation at x = 27 to estimate f(30).

$$f'(x) = \frac{4}{3}x^{1/3} + \frac{1}{3}$$

$$f'(27) = \frac{4}{3} \cdot 27^{1/3} + \frac{1}{3} = \frac{13}{3}$$

$$f(27) = 27^{4/3} + \frac{27}{3} = 90$$

$$l(x) = \frac{13}{3}(x - 27) + 90$$

$$l(30) = \frac{13}{3}(30 - 27) + 90 = 103$$

Therefore, $f(30) \cong 103$.

2. Use the first derivative test to find the local minima and maxima of

$$f(x) = 3x^4 - 8x^3 + 6x^2 + 13$$

$$f'(x) = 12x^3 - 24x^2 + 12x$$

<u>Critical numbers</u>: f'(x) = 0 or undefined

$$f'(x) = 12x^3 - 24x^2 + 12x$$
$$= 12x(x^2 - 2x + 1)$$
$$= 12x(x - 1)^2$$

We see that f'(x) = 0 when x = 0, 1.

Sign of f':

We see that f is decreasing on $(-\infty,0)$ and nondecreasing on $(0,\infty)$. It has a local minimum at x=0.

3. Use the second derivative test to find the local minima, maxima, and inflection points of

$$f(x) = x^4 - 18x^2$$

$$f'(x) = 4x^3 - 36x = 4x(x^2 - 9)$$

$$f''(x) = 12x^2 - 36 = 12(x^2 - 3)$$

<u>Critical numbers</u>: f'(x) = 0 or undefined We see that f'(x) = 0 when x = 0, -3, 3.

Second derivative test:

f''(0) = -36 < 0. Thus f has a local minimum at x = 0. f''(-3) = 72 > 0. Thus f has a local maximum at x = -3. f''(3) = 72 > 0. Thus f has a local maximum at x = 3.

<u>Inflection points</u>:

$$f''(x) = 0$$
 when $x = \pm \sqrt{3}$.
Sign of f'' :

f'' has inflection points at $x = \pm \sqrt{3}$.

4. Consider the curve given by the equation

$$y^2(x+y-1) - 2x^3 = 0.$$

Write the equation of the tangent line through the point (0,1).

Differentiate Implicitly:

$$2yy'(x+y-1) + y^2(1+y') - 6x^2 = 0$$

Substitute (0,1):

$$2 \cdot 1 \cdot y'(0+1-1) + 1^{2}(1+y') - 6 \cdot 0^{2} = 0$$
$$1 + y' = 0$$
$$y' = -1$$

Tangent line:

$$l(x) = m(x - x_1) + y_1$$

= -1(x - 0) + 1
= 1 - x

5. Find the angle θ which maximizes the area of the isosceles triangle below.

Hint: First use trigonometry to show that the area can be expressed as $\frac{1}{2}\sin(\theta)$.

Consider the upper half of the triangle:

The length of the sides opposite and adjacent to the given angle are $\sin(\theta/2)$ and $\cos(\theta/2)$, respectively. Therefore the triangle has area

$$A = \sin(\theta/2)\cos(\theta/2)$$
$$= \frac{1}{2}\sin(\theta)$$

where the last line follows from the half-angle formula.

<u>Critical numbers of A</u>: $A' = \frac{d}{d\theta}A = 0$ or undefined

$$A' = \frac{1}{2}\cos(\theta)$$

Observe that A' = 0 when θ is an odd multiple of $\pi/2$. Since the only feasible values for θ are in the interval $[0, \pi]$, we conclude that A is maximized for $\theta = \pi/2$.

6. Consider a spherical tank of radius 1m which is being filled with water at a rate of 3 m³/min. If you take take calculus II, you'll learn how to show that the volume of water at height h is given by $\pi(h^2 - \frac{1}{3}h^3)$. At what rate is the height of water increasing at the instant the height of water is $\frac{1}{2}$ m?

$$V' = \frac{d}{dt}V = \pi(2hh' - h^2h') = \pi hh'(2 - h)$$

When $h = \frac{1}{2}$ we have (using V' = 3)

$$V' = \pi \frac{1}{2}h'(2 - \frac{1}{2})$$
$$3 = \frac{3}{4}\pi h'$$
$$\frac{4}{\pi} = h'$$

The height is increasing at a rate of $4/\pi$ m/min.

7. Suppose the spherical tank above began empty and was half full 1 minute later, use the mean value theorem to argue that at some point the water was flowing in at a rate of at least 2 m³/min.

V is differentiable on the interval [0,1].

Therefore, by the mean value theorem, there is a time t in the interval [0,1] such that

$$V'(c) = \frac{V(1) - V(0)}{1 - 0}$$
$$= \frac{\frac{2}{3}\pi - 0}{1}$$
$$= \frac{2}{3}\pi$$

Since $\pi \ge 3$, we see that $V'(c) > 2 \text{ m}^3/\text{min}$.

- **8.** Compute the derivatives of the following expressions. Simplify your answers.
- (a) $\arcsin(3x^2)$

(b) $\ln(\sin(x))$

$$\frac{d}{dx}\arcsin(3x^2) = \frac{1}{\sqrt{1 - (3x^2)^2}} \cdot 6x \qquad \frac{d}{dx}\ln(\sin(x)) = \frac{1}{\sin(x)} \cdot \cos(x)$$
$$= \frac{6x}{\sqrt{1 - 9x^4}} \qquad = \cot(x)$$

(c)
$$\frac{x-1}{x+1}$$
 (d) x^3e^{2x}

$$\frac{d}{dx}\frac{x-1}{x+1} = \frac{(x+1)(1) - (x-1)(1)}{(x+1)^2} \qquad \frac{d}{dx}(x^3e^{2x}) = 3x^2e^{2x} + x^3e^{2x} \cdot 2$$

$$= \frac{2}{(x+1)^2} \qquad = x^2e^{2x}(3+2x)$$

(e)
$$5x^7 - 4x - \frac{3}{x} + 8$$

$$\frac{d}{dx}(5x^7 - 4x - \frac{3}{x} + 8) = 35x^6 - 4 + \frac{3}{x^2}$$

(f)
$$\sqrt{x} - \sqrt[3]{x} = x^{1/2} - x^{1/3}$$

$$\frac{d}{dx}(x^{1/2} - x^{1/3}) = \frac{1}{2}x^{-1/2} - \frac{1}{3}x^{-2/3}$$