######################################################################## ## DESCRIPTION ## A WeBWorK problem that asks students to answer probability questions on a ## sampling distribution. ## WeBWorK problem written by JoAnne Taormina, <joanne(dot)taormina(at)ncc(dot)edu> ## ENDDESCRIPTION ## ## KEYWORDS('sampling distribution', 'standard error', 'probability') ## ## Author('JoAnne Taormina') ## Institution('Nassau Community College') ######################################################################## DOCUMENT(); # This should be the first executable line in the problem. loadMacros( "PG.pl", "PGstandard.pl", "MathObjects.pl", "PGbasicmacros.pl", "PGchoicemacros.pl", "PGanswermacros.pl", "PGgraphmacros.pl", "PGnumericalmacros.pl", "PGstatisticsmacros.pl", "weightedGrader.pl", ); install_weighted_grader(); TEXT(beginproblem()); $showPartialCorrectAnswers = 1; $n = random(5,10,1); $mean = random(12.02,12.06,0.01); $low = random(11.95,11.99,.01); $high = random(12.01,12.05,.01); $dev = random(0.09,0.13,0.01); $newdev = $dev/sqrt($n); #round newdev to 4 decimal places $newdev = int(10000*$newdev+.5*($newdev <=> 0))/10000; $ans1 = normal_prob($mean, 'infty', mean=>12, deviation=>$newdev); #round ans1 to 4 decimal places $ans1 = int(10000*$ans1+.5*($ans1 <=> 0))/10000; $ans2 = normal_prob($low, $high, mean=>12, deviation=>$newdev); #round ans2 to 4 decimal places $ans2 = int(10000*$ans2+.5*($ans2 <=> 0))/10000; $n_2 = random(10,15,1); $mean_2 = random(119,119.4,0.01); $high_2 = random(120,120.05,.01); $dev_2 = random(0.6,0.7,0.01); $stnd_error = $dev_2/sqrt($n_2); $stnd_error = int(10000*$stnd_error +.5*($stnd_error <=> 0))/10000; $ans3 = normal_prob('-infty', $mean_2, mean=>119.54, deviation=>$stnd_error ); #round ans3 to 4 decimal places $ans3 = int(10000*$ans3+.5*($ans3 <=> 0))/10000; $ans4 = normal_prob($high_2,'infty', mean=>119.54, deviation=>$stnd_error ); #round ans4 to 4 decimal places $ans4 = int(10000*$ans4+.5*($ans4 <=> 0))/10000; $newdev = Compute($newdev); $ans1 = Compute($ans1); $ans2 = Compute($ans2); $stnd_error = Compute($stnd_error); $ans3 = Compute($ans3); $ans4 = Compute($ans4); BEGIN_TEXT 1. Cans of regular Coke are labeled as containing \(12 \mbox{ oz}\). $BR Statistics students weighed a sample of \($n\) randomly chosen cans, and found the sample mean weight to be \($mean \mbox{ oz}\). $BR Assume that cans of Coke are filled so that the actual amounts are normally distributed with a mean of \(12.00 \mbox{ oz}\) and a population standard deviation of \($dev \mbox{ oz}\). $BR $BR (a) Find the standard error of the sampling distribution. $BITALIC Round your answer to 4 decimal places. $EITALIC $BR $BCENTER \{ans_rule(10)\} $ECENTER $BR $BR (b) Using the answer from part (a), find the probability that a sample of \($n\) cans will have a sample mean amount of at least \($mean \mbox{ oz}\). $BITALIC Round your answer to 4 decimal places. $EITALIC $BR $BCENTER \{ans_rule(10)\} $ECENTER $BR $BR (c) Using the answer from part (a), find the probability that a sample of \($n\) cans will have a sample mean weight between \($low \mbox{ oz}\) and \($high \mbox{ oz}\). $BITALIC Round your answer to 4 decimal places. $EITALIC $BR $BCENTER \{ans_rule(10)\} $ECENTER $BR $BR 2. The mean weight of an American newborn baby is \(119.54 \mbox{ oz}\) (about 7 pounds 8 ounces) with a population standard deviation of \($dev_2 \mbox{ oz}\). $BR In a random sample of \($n_2\) newborn babies, the mean weight was calculated to be \($mean_2 \mbox{ oz}\). $BR $BR (a) Find the standard error of the sampling distribution. $BITALIC Round your answer to 4 decimal places. $EITALIC $BR $BCENTER \{ans_rule(10)\} $ECENTER $BR $BR (b) Using your answer to part (a), what is the probability that in a random sample of \( $n_2 \) newborn babies, the mean weight is at most \( $mean_2 \mbox{ oz}\)? $BITALIC Round your answer to 4 decimal places. $EITALIC $BR $BCENTER \{ans_rule(10)\} $ECENTER $BR $BR (c) Using your answer to part (a), what is the probability that in a random sample of \( $n_2 \) newborn babies, the mean weight is more than \( $high_2 \mbox{ oz}\)? $BITALIC Round your answer to 4 decimal places. $EITALIC $BR $BCENTER \{ans_rule(10)\} $ECENTER END_TEXT WEIGHTED_ANS( $newdev->cmp(tolType=>'absolute',tolerance=>0), 10 ); WEIGHTED_ANS( $ans1->cmp(tolType=>'absolute',tolerance=>0), 20 ); WEIGHTED_ANS( $ans2->cmp(tolType=>'absolute',tolerance=>0), 20 ); WEIGHTED_ANS( $stnd_error->cmp(tolType=>'absolute',tolerance=>0), 10 ); WEIGHTED_ANS( $ans3->cmp(tolType=>'absolute',tolerance=>0), 20 ); WEIGHTED_ANS( $ans4->cmp(tolType=>'absolute',tolerance=>0), 20 ); ENDDOCUMENT(); # This should be the last executable line in the problem.